Forked from masroorhasan/optimized_tf_serving_client.py
Created
March 17, 2021 04:11
-
-
Save Peter-Chou/f25bf06747ca2fdb530cccbabd87c82b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| from __future__ import print_function | |
| import argparse | |
| import numpy as np | |
| import time | |
| tt = time.time() | |
| import cv2 | |
| from grpc.beta import implementations | |
| from protos.tensorflow.core.framework import tensor_pb2 | |
| from protos.tensorflow.core.framework import tensor_shape_pb2 | |
| from protos.tensorflow.core.framework import types_pb2 | |
| from protos.tensorflow_serving.apis import predict_pb2 | |
| from protos.tensorflow_serving.apis import prediction_service_pb2 | |
| parser = argparse.ArgumentParser(description='incetion grpc client flags.') | |
| parser.add_argument('--host', default='0.0.0.0', help='inception serving host') | |
| parser.add_argument('--port', default='9000', help='inception serving port') | |
| parser.add_argument('--image', default='', help='path to JPEG image file') | |
| FLAGS = parser.parse_args() | |
| def main(): | |
| # create prediction service client stub | |
| channel = implementations.insecure_channel(FLAGS.host, int(FLAGS.port)) | |
| stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) | |
| # create request | |
| request = predict_pb2.PredictRequest() | |
| request.model_spec.name = 'resnet' | |
| request.model_spec.signature_name = 'serving_default' | |
| # read image into numpy array | |
| img = cv2.imread(FLAGS.image).astype(np.float32) | |
| # convert to tensor proto and make request | |
| # shape is in NHWC (num_samples x height x width x channels) format | |
| dims = [tensor_shape_pb2.TensorShapeProto.Dim(size=dim) for dim in [1]+list(img.shape)] | |
| tensor = tensor_pb2.TensorProto( | |
| dtype=types_pb2.DT_FLOAT, | |
| tensor_shape=tensor_shape_pb2.TensorShapeProto(dim=dims), | |
| float_val=list(img.reshape(-1))) | |
| request.inputs['input'].CopyFrom(tensor) | |
| resp = stub.Predict(request, 30.0) | |
| print('total time: {}s'.format(time.time() - tt)) | |
| if __name__ == '__main__': | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment