P = p·Gtaproot internal public keyp = a·btaproot internal private key
Alice and Bob reveal each other their pubkey for the session, and then both can generate the same address.
A = a·GAlice (buyer of UTXO)
| use num_traits::Float; | |
| /// Calculates the lengths of the hypotenuses in the Spiral of Theodorus, | |
| /// which are the square roots of integers starting from sqrt(2). | |
| fn calculate_theodorus_hypotenuses<F: Float>(count: u32) -> Vec<F> { | |
| // We want roots from sqrt(2) up to sqrt(count + 1). | |
| // The number of triangles is 'count'. | |
| let mut lengths = Vec::with_capacity(count as usize); | |
| // The length of the first hypotenuse (the base of the spiral) is sqrt(1^2 + 1^2) = sqrt(2). |
| use sha2::{Digest, Sha256}; | |
| use std::collections::{HashMap, HashSet}; | |
| use std::fs; | |
| use std::io::{self, Read}; | |
| use serde::{Serialize, Deserialize}; | |
| use chrono::Utc; | |
| // APPROVED DEPENDENCY: Using data_encoding for all hex operations | |
| use data_encoding::HEXUPPER; | |
| // ==================================================================== |
| use sha2::{Digest, Sha256}; | |
| use std::collections::{HashMap, HashSet}; | |
| use std::fs; | |
| use std::io::{self, Read}; | |
| use serde::{Serialize, Deserialize}; | |
| use chrono::Utc; | |
| // APPROVED DEPENDENCY: Using data_encoding for all hex operations | |
| use data_encoding::HEXUPPER; | |
| // ==================================================================== |
| use std::net::{TcpListener, TcpStream, /*ToSocketAddrs, */SocketAddr}; | |
| use std::time::Duration; | |
| use std::thread; | |
| use std::io::{self, Read, Write}; | |
| // --- Configuration --- | |
| const TARGET_IP: &str = "127.0.0.1"; // The IP the scanner checks | |
| const TIMEOUT_MS: u64 = 500; // Connection timeout in milliseconds | |
| // --------------------- |
| use std::env; | |
| fn env_vars() { | |
| // Iterate over all environment variables. | |
| for (key, value) in env::vars() { | |
| println!("{}: {}", key, value); | |
| } | |
| // You can also filter the environment variables. | |
| println!("\nFiltered environment variables:"); |
| // Only using standard library features for this illustrative concept, | |
| // as the listed crates don't provide a direct, safe XOR-list implementation. | |
| use std::ptr; | |
| use std::mem; | |
| // --- A simplified structure for an XOR-linked list node --- | |
| struct Node { | |
| pub value: u32, | |
| // The "link" is the XOR of the *pointers* to the previous and next nodes. |
| // 1. Declarative Macro Definition | |
| // This macro takes a field identifier ($field:ident) and generates a public | |
| // getter method with the same name. | |
| macro_rules! create_getter { | |
| ($field:ident) => { | |
| // The generated code: | |
| pub fn $field(&self) -> &str { | |
| // Assumes the field is a String, and returns a string slice (&str) | |
| &self.$field | |
| } |
| use std::f64::consts::PI; | |
| // Note: This implementation uses f64 (floating-point) for the polar coordinates (r, theta) | |
| // and trigonometric functions (sin, cos). This approach is for **geometric demonstration** // and is NOT how Elliptic Curve Cryptography (ECC) is performed, as ECC requires | |
| // all arithmetic to be done with **integers** in a finite field (modulo P). | |
| // The equation evaluated is: | |
| // r^2 * sin^2(θ) = (A_std * r^3 * cos^3(θ) + B_std * r * cos(θ) + C_std) mod P | |
| /// Evaluates the polar form of the Elliptic Curve equation. |
| // Note: In real ECC, the modulus P is a large prime (256 bits or more), | |
| // which requires an external crate like `num-bigint` or `crypto-bigint`. | |
| // This example uses u128, which is only 128 bits, for demonstration purposes. | |
| // We will map the general equation to the standard Weierstrass form over a finite field: | |
| // LHS: R * sin^2(θ) -> y_squared | |
| // RHS: A*(r/cos(θ))^3 + B*(r/cos(θ))^1 + C -> A_std * x^3 + B_std * x + C_std | |
| /// Evaluates the right-hand side of the Elliptic Curve equation (Weierstrass form) | |
| /// over a finite field, using only Rust's standard library integer types (u128). |