Created
April 4, 2022 13:24
-
-
Save RobMulla/738491f7bf7cfe79168c7e55c622efa5 to your computer and use it in GitHub Desktop.
Revisions
-
RobMulla created this gist
Apr 4, 2022 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,45 @@ import pandas as pd import numpy as np def get_dataset(size): # Create Fake Dataset df = pd.DataFrame() df['size'] = np.random.choice(['big','medium','small'], size) df['age'] = np.random.randint(1, 50, size) df['team'] = np.random.choice(['red','blue','yellow','green'], size) df['win'] = np.random.choice(['yes','no'], size) dates = pd.date_range('2020-01-01', '2022-12-31') df['date'] = np.random.choice(dates, size) df['prob'] = np.random.uniform(0, 1, size) return df def set_dtypes(df): df['size'] = df['size'].astype('category') df['team'] = df['team'].astype('category') df['age'] = df['age'].astype('int16') df['win'] = df['win'].map({'yes':True, 'no': False}) df['prob'] = df['prob'].astype('float32') return df print('Reading and writing CSV') df = get_dataset(5_000_000) df = set_dtypes(df) %time df.to_csv('test.csv') %time df_csv = pd.read_csv('test.csv') print('Reading and writing Pickle') df = get_dataset(5_000_000) df = set_dtypes(df) %time df.to_pickle('test.pickle') %time df_pickle = pd.read_pickle('test.pickle') print('Reading and writing Parquet') df = get_dataset(5_000_000) df = set_dtypes(df) %time df.to_parquet('test.parquet') %time df_parquet = pd.read_parquet('test.parquet') print('Reading and writing Feather') df = get_dataset(5_000_000) df = set_dtypes(df) %time df.to_feather('test.feather') %time df_feather = pd.read_feather('test.feather')