-
-
Save ShakeDewan/7608edc4bd1df66b1ce29a30894a40a5 to your computer and use it in GitHub Desktop.
Revisions
-
fchollet created this gist
Aug 13, 2016 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,27 @@ from keras.models import Sequential from keras.layers import Dense x, y = ... x_val, y_val = ... # 1-dimensional MSE linear regression in Keras model = Sequential() model.add(Dense(1, input_dim=x.shape[1])) model.compile(optimizer='rmsprop', loss='mse') model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) # 2-class logistic regression in Keras model = Sequential() model.add(Dense(1, activation='sigmoid', input_dim=x.shape[1])) model.compile(optimizer='rmsprop', loss='binary_crossentropy') model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) # logistic regression with L1 and L2 regularization from keras.regularizers import l1l2 reg = l1l2(l1=0.01, l2=0.01) model = Sequential() model.add(Dense(1, activation='sigmoid', W_regularizer=reg, input_dim=x.shape[1])) model.compile(optimizer='rmsprop', loss='binary_crossentropy') model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val))