Skip to content

Instantly share code, notes, and snippets.

@SubhadityaMukherjee
Created July 15, 2025 08:27
Show Gist options
  • Select an option

  • Save SubhadityaMukherjee/03bc3262e2c390ac651362f829db733f to your computer and use it in GitHub Desktop.

Select an option

Save SubhadityaMukherjee/03bc3262e2c390ac651362f829db733f to your computer and use it in GitHub Desktop.

Revisions

  1. SubhadityaMukherjee created this gist Jul 15, 2025.
    91 changes: 91 additions & 0 deletions alfie_arch_flow.md
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,91 @@
    ```mermaid
    flowchart LR
    %% Intent and Control
    A[Intent Recognition] -->|Extracts task type & user input| B[Controller]
    B -->|Requests requirements| C[AutoML Engine]
    C -->|Returns requirements JSON| B
    B -->|Sends config, data, task info| C
    %% Core AutoML Tasks
    subgraph Core_AutoML_Tasks["Core AutoML Tasks"]
    D[Tabular Engine]
    E[Vision Engine]
    F[AutoML+ Engine]
    C -->|For tabular data| D
    C -->|For vision tasks| E
    C -->|For general or multi-modal tasks| F
    end
    %% Tasks Using Engines
    subgraph Tasks["Tasks"]
    T1[Ensuring Unbiased AI in Autonomous Vehicles]
    T2[Compliance Screener]
    T3[Website Accessibility Checker]
    F -->|Used by| T1
    E -->|Used by| T1
    E -->|Used by| T2
    F -->|Used by| T3
    end
    %% Tabular Path
    subgraph Tabular_Path["Tabular Path"]
    D2[Hyperparameter Search]
    D3[Model Ensembles]
    D -->|Uses| D2
    D -->|Uses| D3
    end
    %% Vision Path
    subgraph Vision_Path["Vision Path"]
    E2[Transfer Learning]
    E3[Neural Architecture Search]
    E -->|Uses| E2
    E -->|Avoids due to cost| E3
    end
    %% Data & Model Storage (AutoDW)
    subgraph AutoDW["AutoDW"]
    G[Model Store]
    H[Dataset Store]
    I[Session Store]
    C -->|Saves model| G
    C -->|Saves data| H
    C -->|Saves session info| I
    G1[Model Metadata]
    H1[Dataset Metadata]
    G <-->|Stores handler & ethics info| G1
    H <-->|Stores splits & metadata| H1
    end
    %% Explainability (XAI Layer)
    C -->|Triggers| J[XAI Layer]
    J -->|Receives model, task, test data| C
    J1[SHAP / GradCAM / Fairness Metrics]
    J -->|Generates| J1
    J1 -->|Provided to user| K[User Interface]
    K -->|Reports evaluation results| L[Transparency & Trust]
    %% Semantic & Fairness
    C -->|Queries task context| M[Semantic Knowledge Graph]
    M -->|Returns insights| C
    M -->|Feeds| J
    M -->|Informs| N[Fairness Evaluation]
    N -->|Sends feedback| C
    %% Styles
    classDef core fill:#fef3c7,stroke:#f59e0b,stroke-width:2px,color:black;
    classDef data fill:#dbeafe,stroke:#3b82f6,stroke-width:2px,color:black;
    classDef vision fill:#ede9fe,stroke:#8b5cf6,stroke-width:2px,color:black;
    classDef xai fill:#ecfccb,stroke:#65a30d,stroke-width:2px,color:black;
    classDef external fill:#f0f9ff,stroke:#0ea5e9,stroke-width:2px,color:black;
    classDef task fill:#fef9c3,stroke:#eab308,stroke-width:2px,color:black;
    class D,D2,D3,F core;
    class E,E2,E3 vision;
    class G,H,I,G1,H1 data;
    class J,J1,K,L,N xai;
    class M external;
    class T1,T2,T3 task;
    ```