Created
June 18, 2019 09:57
-
-
Save ahmedbilal/47ea28a2b08c91d29b7dcadd434ba230 to your computer and use it in GitHub Desktop.
Revisions
-
ahmedbilal created this gist
Jun 18, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,54 @@ import keras import numpy as np from os.path import isfile as is_file_exists from keras.models import Sequential from keras.layers import Dense, Activation from keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split def get_data(filename): _list = [] with open(filename, "r") as f: for line in f.readlines(): _list.append([int(line) for line in line.split(",")]) return np.array(_list) def get_label(filename): _list = [] with open(filename, "r") as f: for label in f.readlines(): _list.append(int(label)) return np.array(_list) model = Sequential() # Layers model.add(Dense(24,activation='relu')) model.add(Dense(7,activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'], batch_size=16) data = get_data("data.txt") labels = get_label("data_labels.txt") X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.40, random_state=42) training_labels = keras.utils.to_categorical(y_train, num_classes=7) testing_labels = keras.utils.to_categorical(y_test, num_classes=7) if not is_file_exists("trained_model"): model.fit(X_train,training_labels,epochs=7) model.save('trained_model') else: model = keras.models.load_model('trained_model') test_loss, test_accuracy = model.evaluate(X_test, testing_labels) print("Test Loss", test_loss) print("Test Accuracy", test_accuracy)