Skip to content

Instantly share code, notes, and snippets.

@ajbrock
Created November 23, 2017 08:04
Show Gist options
  • Save ajbrock/8f15ffc44db2080d8aeb5eb0f064a419 to your computer and use it in GitHub Desktop.
Save ajbrock/8f15ffc44db2080d8aeb5eb0f064a419 to your computer and use it in GitHub Desktop.

Revisions

  1. ajbrock created this gist Nov 23, 2017.
    182 changes: 182 additions & 0 deletions shift_wide_ResNet2.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,182 @@
    ## Wide ResNet with Shift and incorrect hyperparams.
    # Based on code by xternalz: https://github.com/xternalz/WideResNet-pytorch
    # WRN by Sergey Zagoruyko and Nikos Komodakis
    import math
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torch.autograd import Variable as V
    import torch.optim as optim

    import numpy as np


    #torch.cat([torch.zeros(x.size(0),self.channels_per_group,1,x.size(2)).cuda()
    # We'll allocate any leftover channels to the center group
    class shift(nn.Module):
    def __init__(self, in_planes, kernel_size=3):
    super(shift, self).__init__()
    self.in_planes = in_planes
    self.kernel_size = kernel_size
    self.channels_per_group = self.in_planes // (self.kernel_size**2)
    # self.groups = self.in_planes // kernel_size

    # Leave the final group in place
    # We've actually reversed the tops+bottoms vs left+right (first spatial index being rows, second being columns). Oh well.
    def forward(self,x):
    # out = V(torch.zeros(x.size()).cuda())
    x_pad = F.pad(x,(1,1,1,1))
    # Alias for convenience
    cpg = self.channels_per_group



    # cat_layers = [torch.cat([V(torch.zeros(x.size(0),x.size(1),1,x.size(3)).cuda()),
    # x[:, i * cpg : (i + 1) * cpg, :-1, :]],2)]
    cat_layers =[]
    # Bottom shift, grab the Top element
    i = 0
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, :-2, 1:-1]]

    # Top shift, grab the Bottom element
    i = 1
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 2:, 1:-1]]

    # Right shift, grab the left element
    i = 2
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 1:-1, :-2]]

    # Left shift, grab the right element
    i = 3
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 1:-1, 2:]]

    # Bottom Right shift, grab the Top left element
    i = 4
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, :-2, :-2]]

    # Bottom Left shift, grab the Top right element
    i = 5
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, :-2, 2:]]

    # Top Right shift, grab the Bottom Left element
    i = 6
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 2:, :-2]]

    # Top Left shift, grab the Bottom Right element
    i = 7
    cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 2:, 2:]]

    i = 8
    cat_layers += [x_pad[:, i * cpg :, 1:-1, 1:-1]]
    return torch.cat(cat_layers,1)


    class BasicBlock(nn.Module):
    def __init__(self, in_planes, out_planes, stride, dropRate,E=9):
    super(BasicBlock, self).__init__()

    self.bn1 = nn.BatchNorm2d(in_planes)
    self.relu1 = nn.ReLU(inplace=True)
    self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
    padding=0, bias=False)

    self.conv2 = shift(out_planes)
    self.bn2 = nn.BatchNorm2d(out_planes)
    self.relu2 = nn.ReLU(inplace=True)
    self.conv3 = nn.Conv2d(out_planes, out_planes, kernel_size=1, stride=1,
    padding=0, bias=False)
    self.droprate = dropRate
    self.equalInOut = (in_planes == out_planes)
    self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
    padding=0, bias=False) or None

    def forward(self, x):

    if not self.equalInOut:
    x = self.relu1(self.bn1(x))
    else:
    out = self.relu1(self.bn1(x))
    out = self.relu2(self.bn2(self.conv2(self.conv1(out if self.equalInOut else x))))

    if self.droprate > 0:
    out = F.dropout(out, p=self.droprate, training=self.training)
    out = self.conv3(out)
    out = torch.add(x if self.equalInOut else self.convShortcut(x), out)
    # print(x.size(),out.size())
    return out

    # note: we call it DenseNet for simple compatibility with the training code.
    # similar we call it growthRate instead of widen_factor
    class Network(nn.Module):
    def __init__(self, widen_factor, depth, nClasses, epochs, dropRate=0.0):
    super(Network, self).__init__()

    self.epochs = epochs

    nChannels = [16, 16*widen_factor, 32*widen_factor, 64*widen_factor]
    assert((depth - 4) % 6 == 0)
    n = int((depth - 4) / 6)

    block = BasicBlock

    # 1st conv before any network block
    self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
    padding=1, bias=False)

    # 1st block
    self.block1 = self._make_layer(n, nChannels[0], nChannels[1], block, 1, dropRate)
    # 2nd block
    self.block2 = self._make_layer(n, nChannels[1], nChannels[2], block, 2, dropRate)
    # 3rd block
    self.block3 = self._make_layer(n, nChannels[2], nChannels[3], block, 2, dropRate)
    # global average pooling and classifier
    self.bn1 = nn.BatchNorm2d(nChannels[3])
    self.relu = nn.ReLU(inplace=True)
    self.fc = nn.Linear(nChannels[3], nClasses)
    self.nChannels = nChannels[3]


    for m in self.modules():
    if isinstance(m, nn.Conv2d):
    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    m.weight.data.normal_(0, math.sqrt(2. / n))
    elif isinstance(m, nn.BatchNorm2d):
    m.weight.data.fill_(1)
    m.bias.data.zero_()
    elif isinstance(m, nn.Linear):
    m.bias.data.zero_()



    # Optimizer
    self.lr = 1e-1
    self.optim = optim.SGD(params=self.parameters(),lr=self.lr,
    nesterov=True,momentum=0.9,
    weight_decay=1e-4)
    # Iteration Counter
    self.j = 0

    # A simple dummy variable that indicates we are using an iteration-wise
    # annealing scheme as opposed to epoch-wise.
    self.lr_sched = {'itr':0}
    def _make_layer(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
    layers = []
    for i in range(nb_layers):
    layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))

    return nn.Sequential(*layers)

    def update_lr(self, max_j):
    for param_group in self.optim.param_groups:
    param_group['lr'] = (0.5 * self.lr) * (1 + np.cos(np.pi * self.j / max_j))
    self.j += 1

    def forward(self, x):
    out = self.conv1(x)
    out = self.block1(out)
    out = self.block2(out)
    out = self.block3(out)
    out = self.relu(self.bn1(out))
    out = F.avg_pool2d(out, (out.size(2),out.size(3)))
    out = out.view(-1, self.nChannels)
    return F.log_softmax(self.fc(out))