Created
December 27, 2017 01:50
-
-
Save anonymous/d3815aba83a8f79779451262599b0955 to your computer and use it in GitHub Desktop.
Revisions
-
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,120 @@ import argparse import cv2 import dlib import json import numpy import skimage from pathlib import Path from tqdm import tqdm from umeyama import umeyama from face_alignment import FaceAlignment, LandmarksType def monkey_patch_face_detector(_): detector = dlib.get_frontal_face_detector() class Rect(object): def __init__(self,rect): self.rect=rect def detect( *args ): return [ Rect(x) for x in detector(*args) ] return detect dlib.cnn_face_detection_model_v1 = monkey_patch_face_detector FACE_ALIGNMENT = FaceAlignment( LandmarksType._2D, enable_cuda=True, flip_input=False ) mean_face_x = numpy.array([ 0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124, 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036, 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918, 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149, 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721, 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874, 0.553364, 0.490127, 0.42689 ]) mean_face_y = numpy.array([ 0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891, 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326, 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733, 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099, 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805, 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746, 0.784792, 0.824182, 0.831803, 0.824182 ]) landmarks_2D = numpy.stack( [ mean_face_x, mean_face_y ], axis=1 ) def transform( image, mat, size, padding=0 ): mat = mat * size mat[:,2] += padding new_size = int( size + padding * 2 ) return cv2.warpAffine( image, mat, ( new_size, new_size ) ) def main( args ): input_dir = Path( args.input_dir ) assert input_dir.is_dir() output_dir = input_dir / args.output_dir output_dir.mkdir( parents=True, exist_ok=True ) output_file = input_dir / args.output_file input_files = list( input_dir.glob( "*." + args.file_type ) ) if args.maxFrames > 0: input_files=input_files[args.startFrame:args.startFrame+args.maxFrames] elif args.startFrame>0: input_files=input_files[args.startFrame:] assert len( input_files ) > 0, "Can't find input files" def iter_face_alignments(): for fn in tqdm( input_files ): image = cv2.imread( str(fn) ) if image is None: tqdm.write( "Can't read image file: ", fn ) continue faces = FACE_ALIGNMENT.get_landmarks( skimage.io.imread( str(fn) ) ) if faces is None: continue if len(faces) == 0: continue if args.only_one_face and len(faces) != 1: continue for i,points in enumerate(faces): alignment = umeyama( points[17:], landmarks_2D, True )[0:2] aligned_image = transform( image, alignment, 160, 48 ) if len(faces) == 1: out_fn = "{}.jpg".format( Path(fn).stem ) else: out_fn = "{}_{}.jpg".format( Path(fn).stem, i ) out_fn = output_dir / out_fn cv2.imwrite( str(out_fn), aligned_image ) yield str(fn.relative_to(input_dir)), str(out_fn.relative_to(input_dir)), list( alignment.ravel() ), list(points.flatten().astype(float)) face_alignments = list( iter_face_alignments() ) with output_file.open('w') as f: results = json.dumps( face_alignments, ensure_ascii=False ) f.write( results ) print( "Save face alignments to output file:", output_file ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "input_dir" , type=str ) parser.add_argument( "output_dir" , type=str, nargs='?', default='aligned' ) parser.add_argument( "output_file", type=str, nargs='?', default='alignments.json' ) parser.set_defaults( only_one_face=False ) parser.add_argument('--one-face' , dest='only_one_face', action='store_true' ) parser.add_argument('--all-faces', dest='only_one_face', action='store_false' ) parser.add_argument( "--startFrame", type=int, default='0' ) parser.add_argument( "--maxFrames", type=int, default='0' ) parser.add_argument( "--file-type", type=str, default='jpg' ) main( parser.parse_args() ) This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,133 @@ import argparse import cv2 import json import numpy from pathlib import Path from tqdm import tqdm from scipy import ndimage from model import autoencoder_A from model import autoencoder_B from model import encoder, decoder_A, decoder_B encoder .load_weights( "models/encoder.h5" ) decoder_A.load_weights( "models/decoder_A.h5" ) decoder_B.load_weights( "models/decoder_B.h5" ) def convert_one_image( autoencoder, image, mat,facepoints,erosion_kernel,blurSize,seamlessClone,maskType ): size = 64 image_size = image.shape[1], image.shape[0] face = cv2.warpAffine( image, mat * size, (size,size) ) face = numpy.expand_dims( face, 0 ) new_face = autoencoder.predict( face / 255.0 )[0] new_face = numpy.clip( new_face * 255, 0, 255 ).astype( image.dtype ) face_mask = numpy.zeros(image.shape,dtype=float) if 'Rect' in maskType: face_src = numpy.ones(new_face.shape,dtype=float) cv2.warpAffine( face_src, mat * size, image_size, face_mask, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT ) hull_mask = numpy.zeros(image.shape,dtype=float) if 'Hull' in maskType: hull = cv2.convexHull( numpy.array( facepoints ).reshape((-1,2)).astype(int) ).flatten().reshape( (-1,2) ) cv2.fillConvexPoly( hull_mask,hull,(1,1,1) ) if maskType == 'FaceHull': image_mask = hull_mask elif maskType == 'Rect': image_mask = face_mask else: image_mask = ((face_mask*hull_mask)) if erosion_kernel is not None: image_mask = cv2.erode(image_mask,erosion_kernel,iterations = 1) if blurSize!=0: image_mask = cv2.blur(image_mask,(blurSize,blurSize)) base_image = numpy.copy( image ) new_image = numpy.copy( image ) cv2.warpAffine( new_face, mat * size, image_size, new_image, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT ) outImage = None if seamlessClone: masky,maskx = cv2.transform( numpy.array([ size/2,size/2 ]).reshape(1,1,2) ,cv2.invertAffineTransform(mat*size) ).reshape(2).astype(int) outimage = cv2.seamlessClone(new_image.astype(numpy.uint8),base_image.astype(numpy.uint8),(image_mask*255).astype(numpy.uint8),(masky,maskx) , cv2.NORMAL_CLONE ) else: foreground = cv2.multiply(image_mask, new_image.astype(float)) background = cv2.multiply(1.0 - image_mask, base_image.astype(float)) outimage = cv2.add(foreground, background) return outimage def main( args ): input_dir = Path( args.input_dir ) assert input_dir.is_dir() alignments = input_dir / args.alignments with alignments.open() as f: alignments = json.load(f) output_dir = input_dir / args.output_dir output_dir.mkdir( parents=True, exist_ok=True ) if args.direction == 'AtoB': autoencoder = autoencoder_B if args.direction == 'BtoA': autoencoder = autoencoder_A if args.erosionKernelSize>0: erosion_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(args.erosionKernelSize,args.erosionKernelSize)) else: erosion_kernel = None for e in alignments: if len(e)<4: raise LookupError('This script expects new format json files with face points included.') for image_file, face_file, mat,facepoints in tqdm( alignments ): image = cv2.imread( str( input_dir / image_file ) ) face = cv2.imread( str( input_dir / face_file ) ) mat = numpy.array(mat).reshape(2,3) if image is None: continue if face is None: continue new_image = convert_one_image( autoencoder, image, mat, facepoints, erosion_kernel, args.blurSize, args.seamlessClone, args.maskType) output_file = output_dir / Path(image_file).name cv2.imwrite( str(output_file), new_image ) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "input_dir", type=str ) parser.add_argument( "alignments", type=str, nargs='?', default='alignments.json' ) parser.add_argument( "output_dir", type=str, nargs='?', default='merged' ) parser.add_argument("--seamlessClone", type=str2bool, nargs='?', const=False, default='False', help="Attempt to use opencv seamlessClone.") parser.add_argument('--maskType', type=str, default='FaceHullAndRect' ,choices=['FaceHullAndRect','FaceHull','Rect'], help="The type of masking to use around the face.") parser.add_argument( "--blurSize", type=int, default='2' ) parser.add_argument( "--erosionKernelSize", type=int, default='0' ) parser.add_argument( "--direction", type=str, default="AtoB", choices=["AtoB", "BtoA"]) main( parser.parse_args() )