Last active
October 24, 2016 12:46
-
-
Save apple2373/f940f98fbbac84d35e8d to your computer and use it in GitHub Desktop.
Revisions
-
apple2373 revised this gist
Sep 1, 2015 . 1 changed file with 2 additions and 3 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -106,9 +106,8 @@ def forward(x, p, a): with open(savedir+"/log.txt", "a") as f: f.write(str(epoch)+','+str(loss.data)+','+str(np.linalg.norm(grad.data))+'\n') savename = savedir+'/imge'+str(epoch)+'.png' save_x(cuda.to_cpu(x.data),savename) # #optimize x(=image) with momment # momentum= 0.9 -
apple2373 revised this gist
Sep 1, 2015 . 1 changed file with 1 addition and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -2,7 +2,7 @@ # -*- coding: utf-8 -*- # this is a quick implementation of http://arxiv.org/abs/1508.06576 # BUT! This is kind of dirty. Lots of hard coding. import numpy as np import math -
apple2373 revised this gist
Sep 1, 2015 . 1 changed file with 8 additions and 4 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,6 +1,9 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- # this is a quick implementation of http://arxiv.org/abs/1508.06576 # BUT! This is kind of dirty. Lost of hard coding. import numpy as np import math from chainer import cuda, Function, FunctionSet, gradient_check, Variable, optimizers @@ -25,7 +28,7 @@ def reshape2(conv1_1): pixels=conv1_1.data.shape[2]*conv1_1.data.shape[3] return chainer.functions.reshape(conv1_1,(k,pixels)) # save the image x def save_x(img,filename="output.png"): img = img.reshape((3,224,224)) img = np.transpose(img,(1,2,0)) @@ -63,10 +66,11 @@ def forward(x, p, a): cuda.init(3)# is GPU ID!! p=readimage('satoshi_fb.png')#read a content image a=readimage('style.png')#read a style image #download a pretraind caffe model from here: https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md func = caffe.CaffeFunction('VGG_ILSVRC_19_layers.caffemodel')#it takes some time. func.to_gpu() x_data=np.random.randn(1,3,224,224).astype(np.float32) -
apple2373 created this gist
Sep 1, 2015 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,124 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import math from chainer import cuda, Function, FunctionSet, gradient_check, Variable, optimizers import chainer.functions as Fu from chainer.functions import caffe import chainer import matplotlib.pyplot as plt from scipy.misc import imread, imresize, imsave def readimage(filename): img = imread(filename) img = imresize(img,[224, 224]) img = np.transpose(img,(2,0,1)) img = img.reshape((1,3,224,224)) p_data = np.ascontiguousarray(img,dtype=np.float32) p = Variable(cuda.to_gpu(p_data)) return p def reshape2(conv1_1): k=conv1_1.data.shape[1] pixels=conv1_1.data.shape[2]*conv1_1.data.shape[3] return chainer.functions.reshape(conv1_1,(k,pixels)) # save the original image def save_x(img,filename="output.png"): img = img.reshape((3,224,224)) img = np.transpose(img,(1,2,0)) imsave(filename,img) def forward(x, p, a): conv1_1, conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': x}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] conv1_1G,conv2_1G, conv3_1G, conv4_1G,conv5_1G, = [ Fu.matmul(x, x, transa=False, transb=True) for x in [conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F]] # conv1_1,conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': p}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) conv1_1P,conv2_1P, conv3_1P, conv4_1P,conv5_1P, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] # L_content = Fu.mean_squared_error(conv4_1F,conv4_1P)/2 # conv1_1,conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': a}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) conv1_1A0,conv2_1A0, conv3_1A0, conv4_1A0,conv5_1A0, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] conv1_1A,conv2_1A, conv3_1A, conv4_1A,conv5_1A, = [ Fu.matmul(x, x, transa=False, transb=True) for x in [conv1_1A0,conv2_1A0, conv3_1A0, conv4_1A0,conv5_1A0]] # #caution! the deviding number is hard coding! #this part is correspnding to equation (4) in the original paper #to check the current N and M, run the following #[x.data.shape for x in [conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F]] L_style = (Fu.mean_squared_error(conv1_1G,conv1_1A)/(4*64*64*50176*50176) + Fu.mean_squared_error(conv2_1G,conv2_1A)/(4*128**128*12544*12544) + Fu.mean_squared_error(conv3_1G,conv3_1A)/(4*256*256*3136*3136) + Fu.mean_squared_error(conv4_1G,conv4_1A)/(4*512*512*784*784)\ )/4 # this is equal weighting of E_l # ratio = 0.001 #alpha/beta loss = ratio*L_content + L_style return loss #main cuda.init(3)# is GPU ID!! p=readimage('satoshi_fb.png')#read content image a=readimage('style.png')#read style image #func = caffe.CaffeFunction('VGG_ILSVRC_19_layers.caffemodel') func.to_gpu() x_data=np.random.randn(1,3,224,224).astype(np.float32) x = Variable(cuda.to_gpu(x_data)) x = readimage('imge230.png') # if you want to start from a exsiting image savedir="satoshi_fb_adam" #optimize x(=image) with adam #note we use numpy for optimization alpha=1 beta1=0.9 beta2=0.999 eps=1e-8 v=np.zeros_like(cuda.to_cpu(x.data)) m=np.zeros_like(v) for epoch in xrange(10000): t=0 loss=forward(x,p,a) loss.backward() grad_cuda=x.grad.copy() grad=cuda.to_cpu(grad_cuda) t +=1 m = beta1*m + (1-beta1)*grad v = beta2*v + (1-beta2)*(grad*grad) m_hat=m/(1-np.power(beta1,t)) v_hat=v/(1-np.power(beta2, t)) x.data -= cuda.to_gpu( alpha * m_hat / (np.sqrt(v_hat) + eps) )#back it to cuda with open(savedir+"/log.txt", "a") as f: f.write(str(epoch)+','+str(loss.data)+','+str(np.linalg.norm(grad.data))+'\n') if t%500==0: savename = savedir+'/imge'+str(epoch)+'.png' save_x(cuda.to_cpu(x.data),savename) # #optimize x(=image) with momment # momentum= 0.9 # lr=100 # v=np.zeros_like(x.data) # for epoch in xrange(10000): # loss=forward(x,p,a) # loss.backward() # grad=x.grad.copy() # v *= momentum # v -= lr * grad # x.data += v # with open(savedir+"/log.txt", "a") as f: # f.write(str(epoch+315)+','+str(loss.data)+','+str(np.linalg.norm(x.grad))+'\n') # savename = savedir+'/imge'+str(epoch+315)+'.png' # save_x(x.data,savename)