-
Star
(110)
You must be signed in to star a gist -
Fork
(41)
You must be signed in to fork a gist
-
-
Save ar-pa/957297fb3f88996ead11 to your computer and use it in GitHub Desktop.
| // In the name of Allah. | |
| // We're nothing and you're everything. | |
| // Ya Ali! | |
| #include <bits/stdc++.h> | |
| using namespace std; | |
| typedef long long ll; | |
| const int maxn = 1e2 + 14, lg = 15; | |
| /* | |
| ###################################################################### | |
| ####################### THE BIG INT ########################## | |
| */ | |
| const int base = 1000000000; | |
| const int base_digits = 9; | |
| struct bigint { | |
| vector<int> a; | |
| int sign; | |
| /*<arpa>*/ | |
| int size(){ | |
| if(a.empty())return 0; | |
| int ans=(a.size()-1)*base_digits; | |
| int ca=a.back(); | |
| while(ca) | |
| ans++,ca/=10; | |
| return ans; | |
| } | |
| bigint operator ^(const bigint &v){ | |
| bigint ans=1,a=*this,b=v; | |
| while(!b.isZero()){ | |
| if(b%2) | |
| ans*=a; | |
| a*=a,b/=2; | |
| } | |
| return ans; | |
| } | |
| bigint modPow(bigint base, bigint exp, const bigint &mod) { | |
| bigint result = 1; | |
| base %= mod; | |
| while (!exp.isZero()) { | |
| if (exp % 2) | |
| result = (result * base) % mod; | |
| base = (base * base) % mod; | |
| exp /= 2; | |
| } | |
| return result; | |
| } | |
| string to_string(){ | |
| stringstream ss; | |
| ss << *this; | |
| string s; | |
| ss >> s; | |
| return s; | |
| } | |
| int sumof(){ | |
| string s = to_string(); | |
| int ans = 0; | |
| for(auto c : s) ans += c - '0'; | |
| return ans; | |
| } | |
| /*</arpa>*/ | |
| bigint() : | |
| sign(1) { | |
| } | |
| bigint(long long v) { | |
| *this = v; | |
| } | |
| bigint(const string &s) { | |
| read(s); | |
| } | |
| void operator=(const bigint &v) { | |
| sign = v.sign; | |
| a = v.a; | |
| } | |
| void operator=(long long v) { | |
| sign = 1; | |
| a.clear(); | |
| if (v < 0) | |
| sign = -1, v = -v; | |
| for (; v > 0; v = v / base) | |
| a.push_back(v % base); | |
| } | |
| bigint operator+(const bigint &v) const { | |
| if (sign == v.sign) { | |
| bigint res = v; | |
| for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) { | |
| if (i == (int) res.a.size()) | |
| res.a.push_back(0); | |
| res.a[i] += carry + (i < (int) a.size() ? a[i] : 0); | |
| carry = res.a[i] >= base; | |
| if (carry) | |
| res.a[i] -= base; | |
| } | |
| return res; | |
| } | |
| return *this - (-v); | |
| } | |
| bigint operator-(const bigint &v) const { | |
| if (sign == v.sign) { | |
| if (abs() >= v.abs()) { | |
| bigint res = *this; | |
| for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) { | |
| res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0); | |
| carry = res.a[i] < 0; | |
| if (carry) | |
| res.a[i] += base; | |
| } | |
| res.trim(); | |
| return res; | |
| } | |
| return -(v - *this); | |
| } | |
| return *this + (-v); | |
| } | |
| void operator*=(int v) { | |
| if (v < 0) | |
| sign = -sign, v = -v; | |
| for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) { | |
| if (i == (int) a.size()) | |
| a.push_back(0); | |
| long long cur = a[i] * (long long) v + carry; | |
| carry = (int) (cur / base); | |
| a[i] = (int) (cur % base); | |
| //asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base)); | |
| } | |
| trim(); | |
| } | |
| bigint operator*(int v) const { | |
| bigint res = *this; | |
| res *= v; | |
| return res; | |
| } | |
| void operator*=(long long v) { | |
| if (v < 0) | |
| sign = -sign, v = -v; | |
| if(v > base){ | |
| *this = *this * (v / base) * base + *this * (v % base); | |
| return ; | |
| } | |
| for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) { | |
| if (i == (int) a.size()) | |
| a.push_back(0); | |
| long long cur = a[i] * (long long) v + carry; | |
| carry = (int) (cur / base); | |
| a[i] = (int) (cur % base); | |
| //asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base)); | |
| } | |
| trim(); | |
| } | |
| bigint operator*(long long v) const { | |
| bigint res = *this; | |
| res *= v; | |
| return res; | |
| } | |
| friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) { | |
| int norm = base / (b1.a.back() + 1); | |
| bigint a = a1.abs() * norm; | |
| bigint b = b1.abs() * norm; | |
| bigint q, r; | |
| q.a.resize(a.a.size()); | |
| for (int i = a.a.size() - 1; i >= 0; i--) { | |
| r *= base; | |
| r += a.a[i]; | |
| int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()]; | |
| int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1]; | |
| int d = ((long long) base * s1 + s2) / b.a.back(); | |
| r -= b * d; | |
| while (r < 0) | |
| r += b, --d; | |
| q.a[i] = d; | |
| } | |
| q.sign = a1.sign * b1.sign; | |
| r.sign = a1.sign; | |
| q.trim(); | |
| r.trim(); | |
| return make_pair(q, r / norm); | |
| } | |
| bigint operator/(const bigint &v) const { | |
| return divmod(*this, v).first; | |
| } | |
| bigint operator%(const bigint &v) const { | |
| return divmod(*this, v).second; | |
| } | |
| void operator/=(int v) { | |
| if (v < 0) | |
| sign = -sign, v = -v; | |
| for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) { | |
| long long cur = a[i] + rem * (long long) base; | |
| a[i] = (int) (cur / v); | |
| rem = (int) (cur % v); | |
| } | |
| trim(); | |
| } | |
| bigint operator/(int v) const { | |
| bigint res = *this; | |
| res /= v; | |
| return res; | |
| } | |
| int operator%(int v) const { | |
| if (v < 0) | |
| v = -v; | |
| int m = 0; | |
| for (int i = a.size() - 1; i >= 0; --i) | |
| m = (a[i] + m * (long long) base) % v; | |
| return m * sign; | |
| } | |
| void operator+=(const bigint &v) { | |
| *this = *this + v; | |
| } | |
| void operator-=(const bigint &v) { | |
| *this = *this - v; | |
| } | |
| void operator*=(const bigint &v) { | |
| *this = *this * v; | |
| } | |
| void operator/=(const bigint &v) { | |
| *this = *this / v; | |
| } | |
| void operator%=(const bigint &v){ | |
| *this = *this % v; | |
| } | |
| bool operator<(const bigint &v) const { | |
| if (sign != v.sign) | |
| return sign < v.sign; | |
| if (a.size() != v.a.size()) | |
| return a.size() * sign < v.a.size() * v.sign; | |
| for (int i = a.size() - 1; i >= 0; i--) | |
| if (a[i] != v.a[i]) | |
| return a[i] * sign < v.a[i] * sign; | |
| return false; | |
| } | |
| bool operator>(const bigint &v) const { | |
| return v < *this; | |
| } | |
| bool operator<=(const bigint &v) const { | |
| return !(v < *this); | |
| } | |
| bool operator>=(const bigint &v) const { | |
| return !(*this < v); | |
| } | |
| bool operator==(const bigint &v) const { | |
| return !(*this < v) && !(v < *this); | |
| } | |
| bool operator!=(const bigint &v) const { | |
| return *this < v || v < *this; | |
| } | |
| void trim() { | |
| while (!a.empty() && !a.back()) | |
| a.pop_back(); | |
| if (a.empty()) | |
| sign = 1; | |
| } | |
| bool isZero() const { | |
| return a.empty() || (a.size() == 1 && !a[0]); | |
| } | |
| bigint operator-() const { | |
| bigint res = *this; | |
| res.sign = -sign; | |
| return res; | |
| } | |
| bigint abs() const { | |
| bigint res = *this; | |
| res.sign *= res.sign; | |
| return res; | |
| } | |
| long long longValue() const { | |
| long long res = 0; | |
| for (int i = a.size() - 1; i >= 0; i--) | |
| res = res * base + a[i]; | |
| return res * sign; | |
| } | |
| friend bigint gcd(const bigint &a, const bigint &b) { | |
| return b.isZero() ? a : gcd(b, a % b); | |
| } | |
| friend bigint lcm(const bigint &a, const bigint &b) { | |
| return a / gcd(a, b) * b; | |
| } | |
| void read(const string &s) { | |
| sign = 1; | |
| a.clear(); | |
| int pos = 0; | |
| while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) { | |
| if (s[pos] == '-') | |
| sign = -sign; | |
| ++pos; | |
| } | |
| for (int i = s.size() - 1; i >= pos; i -= base_digits) { | |
| int x = 0; | |
| for (int j = max(pos, i - base_digits + 1); j <= i; j++) | |
| x = x * 10 + s[j] - '0'; | |
| a.push_back(x); | |
| } | |
| trim(); | |
| } | |
| friend istream& operator>>(istream &stream, bigint &v) { | |
| string s; | |
| stream >> s; | |
| v.read(s); | |
| return stream; | |
| } | |
| friend ostream& operator<<(ostream &stream, const bigint &v) { | |
| if (v.sign == -1) | |
| stream << '-'; | |
| stream << (v.a.empty() ? 0 : v.a.back()); | |
| for (int i = (int) v.a.size() - 2; i >= 0; --i) | |
| stream << setw(base_digits) << setfill('0') << v.a[i]; | |
| return stream; | |
| } | |
| static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) { | |
| vector<long long> p(max(old_digits, new_digits) + 1); | |
| p[0] = 1; | |
| for (int i = 1; i < (int) p.size(); i++) | |
| p[i] = p[i - 1] * 10; | |
| vector<int> res; | |
| long long cur = 0; | |
| int cur_digits = 0; | |
| for (int i = 0; i < (int) a.size(); i++) { | |
| cur += a[i] * p[cur_digits]; | |
| cur_digits += old_digits; | |
| while (cur_digits >= new_digits) { | |
| res.push_back(int(cur % p[new_digits])); | |
| cur /= p[new_digits]; | |
| cur_digits -= new_digits; | |
| } | |
| } | |
| res.push_back((int) cur); | |
| while (!res.empty() && !res.back()) | |
| res.pop_back(); | |
| return res; | |
| } | |
| typedef vector<long long> vll; | |
| static vll karatsubaMultiply(const vll &a, const vll &b) { | |
| int n = a.size(); | |
| vll res(n + n); | |
| if (n <= 32) { | |
| for (int i = 0; i < n; i++) | |
| for (int j = 0; j < n; j++) | |
| res[i + j] += a[i] * b[j]; | |
| return res; | |
| } | |
| int k = n >> 1; | |
| vll a1(a.begin(), a.begin() + k); | |
| vll a2(a.begin() + k, a.end()); | |
| vll b1(b.begin(), b.begin() + k); | |
| vll b2(b.begin() + k, b.end()); | |
| vll a1b1 = karatsubaMultiply(a1, b1); | |
| vll a2b2 = karatsubaMultiply(a2, b2); | |
| for (int i = 0; i < k; i++) | |
| a2[i] += a1[i]; | |
| for (int i = 0; i < k; i++) | |
| b2[i] += b1[i]; | |
| vll r = karatsubaMultiply(a2, b2); | |
| for (int i = 0; i < (int) a1b1.size(); i++) | |
| r[i] -= a1b1[i]; | |
| for (int i = 0; i < (int) a2b2.size(); i++) | |
| r[i] -= a2b2[i]; | |
| for (int i = 0; i < (int) r.size(); i++) | |
| res[i + k] += r[i]; | |
| for (int i = 0; i < (int) a1b1.size(); i++) | |
| res[i] += a1b1[i]; | |
| for (int i = 0; i < (int) a2b2.size(); i++) | |
| res[i + n] += a2b2[i]; | |
| return res; | |
| } | |
| bigint operator*(const bigint &v) const { | |
| vector<int> a6 = convert_base(this->a, base_digits, 6); | |
| vector<int> b6 = convert_base(v.a, base_digits, 6); | |
| vll a(a6.begin(), a6.end()); | |
| vll b(b6.begin(), b6.end()); | |
| while (a.size() < b.size()) | |
| a.push_back(0); | |
| while (b.size() < a.size()) | |
| b.push_back(0); | |
| while (a.size() & (a.size() - 1)) | |
| a.push_back(0), b.push_back(0); | |
| vll c = karatsubaMultiply(a, b); | |
| bigint res; | |
| res.sign = sign * v.sign; | |
| for (int i = 0, carry = 0; i < (int) c.size(); i++) { | |
| long long cur = c[i] + carry; | |
| res.a.push_back((int) (cur % 1000000)); | |
| carry = (int) (cur / 1000000); | |
| } | |
| res.a = convert_base(res.a, 6, base_digits); | |
| res.trim(); | |
| return res; | |
| } | |
| }; | |
| /* | |
| ####################### THE BIG INT ########################## | |
| ###################################################################### | |
| */ | |
| int main(){ | |
| ios::sync_with_stdio(0), cin.tie(0); | |
| bigint a=99999999; | |
| a*=1000200000003000LL; | |
| cout<<a<<'\n'; | |
| } |
Hi, I want to use it on my library project, can I change some part and use it?
Hi, I want to use it on my library project, can I change some part and use it?
Yes. No problem.
Hi, I want to use it on my library project, can I change some part and use it?
Yes. No problem.
Thank you so much.
Program is not so good.
I had APPCRASH on sum with digits 2000 signs long. This calss not suitable for work applications.
Sexy!
Thank you so much!!!!
just a suggestion: if you could please add modular exponentiation function into the snippet needed in https://codeforces.com/contest/17/problem/D as (((b - 1) * (b ^ (n - 1))) % c) . Here, ^ is failing since we need modpow to do %c in each pow(^) step for optimizing time complexity. Adding needed snippet :
bigint modPow(bigint base, bigint exp, const bigint &mod) {
bigint result = 1;
base %= mod;
while (!exp.isZero()) {
if (exp % 2)
result = (result * base) % mod;
base = (base * base) % mod;
exp /= 2;
}
return result;
}
just a suggestion: if you could please add modular exponentiation function into the snippet needed in https://codeforces.com/contest/17/problem/D as (((b - 1) * (b ^ (n - 1))) % c) . Here, ^ is failing since we need modpow to do %c in each pow(^) step for optimizing time complexity. Adding needed snippet :
bigint modPow(bigint base, bigint exp, const bigint &mod) { bigint result = 1; base %= mod; while (!exp.isZero()) { if (exp % 2) result = (result * base) % mod; base = (base * base) % mod; exp /= 2; } return result; }
Added.
Thanks. Also, since you did use %= in modpow function, but its not defined here, please do also add in :
void operator%=(const bigint &v){
*this = *this % v;
}
it`s awsome, but what about logical operations, like &, >>, <<?