Created
March 2, 2018 13:44
-
-
Save arisliang/64d1bbdddc5eba0fd6cb9d3ba0ccabce to your computer and use it in GitHub Desktop.
Revisions
-
arisliang created this gist
Mar 2, 2018 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,115 @@ """ ch 3.5 https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist.py code for https://github.com/tensorlayer/chinese-book/issues/11 """ import time import numpy as np import tensorflow as tf import tensorlayer as tl import matplotlib as mpl mpl.use('TkAgg') X_train, y_train, X_val, y_val, X_test, y_test = \ tl.files.load_mnist_dataset(shape=(-1, 784)) X_train = np.asarray(X_train, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) X_val = np.asarray(X_val, dtype=np.float32) y_val = np.asarray(y_val, dtype=np.int32) X_test = np.asarray(X_test, dtype=np.float32) y_test = np.asarray(y_test, dtype=np.int32) print('X_train.shape', X_train.shape) print('y_train.shape', y_train.shape) print('X_val.shape', X_val.shape) print('y_val.shape', y_val.shape) print('X_test.shape', X_test.shape) print('y_test.shape', y_test.shape) print('X %s y %s' % (X_test.dtype, y_test.dtype)) save_path = './ae_tl/autoencoder2.ckpt' image_width = 28 saver = None # 模型结构参数 hidden_size = 196 input_size = 784 def main_layers(model='relu', is_train=True, reuse=False): """build network :param model: 模型类别,可选Sigmoid或Relu """ with tf.variable_scope("ae", reuse=reuse): # set model reuse tl.layers.set_name_reuse(reuse) # # 定义模型 x = tf.placeholder(tf.float32, shape=[None, input_size], name='x') # 输入层 f(x) network = tl.layers.InputLayer(x, name='input') # ch3.4 introduce noise to input data network = tl.layers.DropoutLayer(network, keep=0.5, is_train=is_train, is_fix=False, name='denoising1') print('Build Network') if model == 'relu': network = tl.layers.DenseLayer(network, hidden_size, tf.nn.relu, name='relu1') # 隐层输出 encoded_img = network.outputs # 重构层输出 g(h) # recon_layer1 = tl.layers.DenseLayer(network, input_size, tf.nn.softplus, name='recon_layer1') recon_layer1 = tl.layers.ReconLayer(network, x_recon=x, n_units=784, act=tf.nn.softplus, name='recon_layer1') elif model == 'sigmoid': network = tl.layers.DenseLayer(network, hidden_size, tf.nn.sigmoid, name='sigmoid1') # 隐层输出 encoded_img = network.outputs # 重构层输出 g(h) # recon_layer1 = tl.layers.DenseLayer(network, input_size, tf.nn.sigmoid, name='recon_layer1') recon_layer1 = tl.layers.ReconLayer(network, x_recon=x, n_units=784, act=tf.nn.sigmoid, name='recon_layer1') return x, recon_layer1 def train_layers(model='relu'): global saver # 定义超参数 n_epochs = 10 batch_size = 128 print_interval = 200 x, recon_layer1 = main_layers(model, is_train=True, reuse=False) saver = tf.train.Saver() with tf.Session() as sess: tl.layers.initialize_global_variables(sess) recon_layer1.pretrain(sess, x=x, X_train=X_train, X_val=X_val, denoise_name='ae/denoising1', n_epoch=n_epochs, batch_size=batch_size, print_freq=print_interval, save=True, save_name='w1pre_') # 保存模型为TensorFlow的ckpt格式 saver.save(sess, save_path=save_path) print('model saved.') if __name__ == '__main__': all_start_time = time.time() model = 'sigmoid' train_layers(model=model) print('all finished took %.2fs' % (time.time() - all_start_time))