Created
January 9, 2016 16:29
-
-
Save atarabi/b3db7d007e24f5cc3519 to your computer and use it in GitHub Desktop.
Revisions
-
atarabi created this gist
Jan 9, 2016 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,39 @@ import numpy as np import chainer from chainer import Chain, optimizers, serializers, Variable, cuda import chainer.functions as F import chainer.links as L class Model(Chain): def __init__(self, n_units=10): super(Model, self).__init__( l1=L.Linear(3, n_units), l2=L.Linear(n_units, n_units), l3=L.Linear(n_units, n_units), l4=L.Linear(n_units, 3), ) def __call__(self, x): h = F.relu(self.l1(x)) h = F.relu(self.l2(h)) h = F.relu(self.l3(h)) return self.l4(h) def train(model, optimizer, x_data, y_data): batch_size = 100 N = x_data.shape[0] indices = np.random.permutation(N) sum_loss = 0.0 for i in range(0, N, batch_size): xs = Variable(cuda.to_gpu(x_data[indices[i:i + batch_size]])) ts = Variable(cuda.to_gpu(y_data[indices[i:i + batch_size]])) ys = model(xs) model.zerograds() loss = F.mean_squared_error(ys, ts) sum_loss += loss.data * len(ts.data) loss.backward() optimizer.update() return sum_loss / N