Created
June 10, 2019 18:35
-
-
Save batson/b9c6cbccbb4e94a40d62881b21007dc9 to your computer and use it in GitHub Desktop.
Revisions
-
batson created this gist
Jun 10, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,177 @@ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Localizing a point source from shot-noisy measurements" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the PSF" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": true }, "outputs": [], "source": [ "spread = 3" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x10edc2208>]" ] }, "execution_count": 100, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XlclWXex/HPj10QUQRcAAUF3JeUtCxNc21TS2uqabF6xqYyS5tpmaaaaXtatc0WmzKnpimzzcpybzNT0dxQWcQNXAAXFJH9ev7gNA9DFAcFrrP83q+XL8+5z33gi8L3XNz3da5bjDEopZTyDj62AyillGo6WvpKKeVFtPSVUsqLaOkrpZQX0dJXSikvoqWvlFJeREtfKaW8iFOlLyJjRCRNRDJF5N5aHh8iIutFpFxEJtbyeAsRyRaRlxoitFJKqVNTZ+mLiC8wC7gA6A5cJSLda+y2B5gEvPsrH+YR4NtTj6mUUqoh+DmxzwAg0xiTBSAi7wHjgK0/72CM2eV4rLLmk0WkP9AG+ApIruuTRUREmLi4OCdiKaWU+tm6devyjTGRde3nTOlHA3ur3c8GBjoTQkR8gGeBa4ARv7HfZGAyQIcOHUhJSXHmwyullHIQkd3O7NfYJ3JvBRYaY7J/aydjzGxjTLIxJjkyss4XKqWUUqfImZF+DhBb7X6MY5szzgYGi8itQHMgQEQKjTG/OBmslFKq8TlT+muBRBGJp6rsrwSuduaDG2N+//NtEZkEJGvhK6WUPXUe3jHGlANTgEXANmCeMSZVRB4WkbEAInKmiGQDlwOviUhqY4ZWSil1asTV1tNPTk42eiJXKaXqR0TWGWPqnCGp78hVSikvoqWvlFJexJkTuUopJ1VWGpZtz0WA4d2iEBHbkZT6L1r6SjWQlZn5PPHldjbnFADQJyaMey7oyqDOEZaTKfX/tPSVOk1b9x3jia+28216HtEtm/Hs5X0wwIzFaVz9+mqGdonknjFd6dauhe2oSmnpK3Wqso8U8ezidD7ZkEOLIH/uv7Ab157dkSB/XwAu7t2OuT/sYtaKTC584TsuOyOG6aOSiG7ZzHJy5c10yqZS9XTkRCmzVmTyz1W7EYEbzonnlvM6ExbsX+v+BUVlvPx1JnN+2AXApEFx3Dq0My2DA5owtfJ0zk7Z1NJXyknFZRXMWbmLl7/O5ERJORP6xTBtZBLtnRy55xw9ycwl6Xy4PpvQQD9uHZbApEFx//nNQKnToaWvVAOpqDR8uC6bGUvSOXCsmOFdo7h7TFe6tA09pY+3/cAxnvxyOyvS8mgfFsS0kUlc1i8GXx+d6aNOnZa+UqfJGMOybbk8tWg76QcL6Rvbkvsu6MrATq0b5OOv2nGIJ77cxsbsArq0CeWeC7owrItO81SnRktfqdOwfs8Rnli4nTW7DhMfEcLdo7swpmfbBi9kYwwLNx/g6UXb2XWoiIHx4dx3YTf6xrZs0M+jPJ+WvlKnICuvkKcXpfHllgNENA/kzhGJ/O7MWPx9G/fN62UVlby3Zg/PL8sgv7CUC3u15c+juxIfEdKon1d5Di19peoh93gxzy/N4L21ewny82HykM78z+B4QgKbdlZzYUk5r3+bxevfZVFaXslVAzowdXgikaGBTZpDuR8tfaWcYIxh1opMXv56B6Xllfx+YAduH55IRHO7JZt7vJgXl2Xy7zV7CPDz4bZhCdw6tLMe71e/ytnS1zdnKa82L2UvzyxOZ0yPttx7QVfiXORwSlRoEI+M78mN58bzvwu38fSiNKJCA7k8ObbuJyv1G3SVTeW19h4u4uHPtnJ2p9a8/Pt+LlP41cVHhPDKNf0ZEB/O3z/bSvaRItuRlJvT0ldeqbLScNcHG/ER4Zkr+uDjwnPkfX2kaj0fY/jzB5uorHStQ7LKvWjpK6/05sqdrNl5mIfG9nCLtXBiw4N58JLurMo6xFuO5RyUOhVa+srrpB88zlOL0hjVvQ0T+kXbjuO0K5JjGd41iie/2k5m7nHbcZSb0tJXXqWsopLp8zYQGujH45f1cqvZMCLC/07oRXCAL9PnbaSsotJ2JOWGtPSVV3lxeSZbco7x2KW9rE/LPBVRoUE8dmkvNmUX8PKKHbbjKDfkVOmLyBgRSRORTBG5t5bHh4jIehEpF5GJ1bb3FZFVIpIqIptE5HcNGV6p+tiw9yizVmQyoV8MY3q2tR3nlF3Yqx3j+7bnxeUZbMo+ajuOcjN1lr6I+AKzgAuA7sBVItK9xm57gEnAuzW2FwHXGWN6AGOA50REFxVRTe5kaQXT522gTWggD42t+e3rfv4+ticRzQOZPm8jxWUVtuMoN+LMSH8AkGmMyTLGlALvAeOq72CM2WWM2QRU1tiebozJcNzeB+QCkQ2SXKl6ePKr7WTlneCZy/vQIqj2i524k7Bgf56+vDeZuVVrBSnlLGdKPxrYW+1+tmNbvYjIACAA0AORqkn9kJnPWz/sYtKgOAYleM5FygcnRnLtWR15c+VOVu04ZDuOchNNciJXRNoBbwM3GGN+MeVARCaLSIqIpOTl5TVFJOUljhWX8acPNtIpMoR7xnS1HafB3XdhVzqGB/OnDzZyvLjMdhzlBpwp/Ryg+oIfMY5tThGRFsAXwP3GmB9r28cYM9sYk2yMSY6M1KM/quH8fcFWDh4vYcYVfWkW4HmXJQwO8OPZK/qyv+Akj3y+1XYc5QacKf21QKKIxItIAHAlsMCZD+7Y/2Pgn8aY+aceU6n6W5R6gA/XZ3Pb0M4efVGS/h1bccvQzsxLyWbp1oO24ygXV2fpG2PKgSnAImAbMM8YkyoiD4vIWAAROVNEsoHLgddEJNXx9CuAIcAkEdng+NO3Ub4SparJLyzhLx9tpmd0C6acn2g7TqO7Y3gS3dq14N6PNnGosMR2HOXCdD195XGMMUx+ex3fpOfx+e3nktTm1C5g7m62HzjG2BdXcn7XKF65pp9bvdtYnT5n19PXd+Qqj/Ph+hyWbD3I3aO7eE3hA3Rt24Lpo5L4KvUAn2xw+rSb8jJa+sqjZB8p4u8LUhkQH86N58TbjtPk/jC4E8kdW/Hgp6nsO3rSdhzlgrT0lceorHSsN28Mz17u2mvkNxZfH+HZK/pQUWm4e76uva9+SUtfeYy5q3axKusQD17SndjwYNtxrOnYOoS/XtSd7zPzeWf1bttxlIvR0lceITO3kCe+3M7wrlFcodeR5aoBsQztEsnjC7eRlVdoO45yIVr6yu39vEZ+cIAv/zvBvdbIbywiwpMTehPoV7X2frmuva8ctPSV23t5xQ42ZRfw2KW9iAoNsh3HZbRpEcSj43uyYe9RXv1Gl7xSVbT0lVvbnF3Ai8szGN+3PRf2amc7jsu5pE97LunTnueWZrAlp8B2HOUCtPSV2youq2DavA1ENA/k72N72o7jsh4Z14PwkADu0rX3FVr6yo09syitaj35y3sTFuz+a+Q3lpbBATw5sTdpB48zc0m67TjKMi195ZZ+zDrEGyt3cu1ZHRmcqCuz1mVYlyiuHtiB2d9lsWbnYdtxlEVa+srtHHeskd8xPJj7LvS8NfIby/0XdiO2VTB3fbCBwpJy23GUJVr6yu08+vk29h09ybNX9CU4wM92HLcREujHjCv6kH3kJI99sc12HGWJlr5yK99l5PF+yl5uGdqZ/h1b2Y7jdpLjwrl5SGf+vWYPKzPzbcdRFmjpK7dhjOHpRWnEtGrG1OGev0Z+Y5k2MpHols14alEarra0ump8WvrKbSzZepBN2QVMHZ5IoJ/nXfqwqQT6+XL7+Qls3HuU5dtzbcdRTUxLX7mFykrDjCXpxEeEcNkZ0bbjuL0J/WPo2DqYZxen60qcXkZLX7mFhVv2s/3Ace4ckYifr37bni5/Xx/uGJ7I1v3HWJR6wHYc1YT0p0e5vIpKw8wl6SS1ac7FvdvbjuMxxvWNpnNkCDOWpFOho32voaWvXN6nG3LYkXeCaSOS8PXCC6M0Fl8fYdrIJDJyC/l80z7bcVQT0dJXLq2sopLnl2XQo30LRvdoazuOx7mwZzu6tg3luaUZuvyyl3Cq9EVkjIikiUimiNxby+NDRGS9iJSLyMQaj10vIhmOP9c3VHDlHT5cl83uQ0VMH5nklZc/bGw+PsL0kUnszD/BRz/pxdS9QZ2lLyK+wCzgAqA7cJWIdK+x2x5gEvBujeeGAw8BA4EBwEMiou+oUU4pKa/gxeWZ9I1tyfldo2zH8Vgju7ehd0wYLyzLoLRcR/uezpmR/gAg0xiTZYwpBd4DxlXfwRizyxizCaj5HTMaWGKMOWyMOQIsAcY0QG7lBd5fu5ecoye5a1SSXg2rEYlUjfazj5xkXspe23FUI3Om9KOB6t8J2Y5tzjid5yovVlxWwUvLMxkQF865CRG243i885Ii6d+xFS8tz9Q19z2cS5zIFZHJIpIiIil5eXm24ygX8M6Pu8k9XqKj/CYiItw1MokDx4p5d/Ue23FUI3Km9HOA2Gr3YxzbnOHUc40xs40xycaY5MhIXRvd250oKeeVr3dwbkIEAzu1th3HawxKiODsTq15+esdnCzV0b6ncqb01wKJIhIvIgHAlcACJz/+ImCUiLRynMAd5dim1K+au2oXh06UMn1Uku0oXueuUUnkF5bwz1W7bEdRjaTO0jfGlANTqCrrbcA8Y0yqiDwsImMBRORMEckGLgdeE5FUx3MPA49Q9cKxFnjYsU2pWh0rLuO1b7I4v2sU/TroRK+mlhwXznlJkbz6zQ690IqHcuqYvjFmoTEmyRjT2RjzmGPbg8aYBY7ba40xMcaYEGNMa2NMj2rPfdMYk+D4M6dxvgzlKd78ficFJ8uYPlJH+bZMH5nEkaIy5ny/03YU1Qhc4kSuUgBHi0p547udjOnRlp7RYbbjeK0+sS0Z2b0Ns7/LoqCozHYc1cC09JXLmP1tFoWl5UzTUb5100cmcby4nH98n2U7impgWvrKJeQXljBn5S4u6d2eLm1Dbcfxet3ateCiXu148/udHD5RajuOakBa+solvPr1DkrKK7hjhF4G0VVMG5nIybIKXvtmh+0oqgFp6SvrDh4r5u0fd3NZvxg6Rza3HUc5JESFMq5vNHNX7SL3eLHtOKqBaOkr62atyKSi0nCHXuzc5dwxPJGyCsPLK3S07ym09JVV2UeK+PeaPVxxZiyx4cG246ga4iJCmNgvhndX72Hf0ZO246gGoKWvrHppeSaCMGVYgu0o6lfcPjwBg+GlFZm2o6gGoKWvrNmVf4IP1mVz9cAOtG/ZzHYc9StiWgVz5ZkdmLd2L3sPF9mOo06Tlr6y5oVlGfj7CrcO62w7iqrDbcMS8PERnl+WYTuKOk1a+sqKzNxCPtmQw3VnxxEVGmQ7jqpD27Agrj2rIx+tzyYrr9B2HHUatPSVFc8tTaeZvy83D+lkO4py0i1DOxPo56ujfTenpa+a3Lb9x/h8035uOCee1s0DbcdRTopoHsikc+JYsHEfaQeO246jTpGWvmpyM5ekExrkxx8G6yjf3Uwe3ImQAD+eW5puO4o6RVr6qkltyj7K4q0H+cPgToQF+9uOo+qpVUgAN54bz5dbDrAlp8B2HHUKtPRVk5qxJJ1Wwf7ccE6c7SjqFN10bjxhzfyZuURH++5IS181mXW7D/N1Wh43n9eZ0CAd5bursGb+TB7SiWXbc1m/54jtOKqetPRVk3l2cToRzQO57uyOtqOo0zRpUBzhIQE62ndDWvqqSfywI58fdhzi1qGdCQ7wsx1HnaaQQD9uOa8z32XkszrrkO04qh609FWjM8YwY3E6bVsEcfXADrbjqAZyzVkdiQoN5Nkl6RhjbMdRTtLSV43u24x8UnYfYcr5CQT5+9qOoxpIswBfbhuWwJqdh1mZqaN9d6GlrxqVMYZnF6cR06oZVyTH2o6jGtiVA2JpHxbEM4vTdLTvJpwqfREZIyJpIpIpIvfW8nigiLzveHy1iMQ5tvuLyFwR2Swi20TkvoaNr1zd0m25bMouYOrwRAL8dIzhaQL9fLl9eCIb9h5l+fZc23GUE+r8KRQRX2AWcAHQHbhKRLrX2O0m4IgxJgGYCTzp2H45EGiM6QX0B27++QVBeb7KSsOMJenER4Rw2RnRtuOoRjKxfwwdwoOZocf23YIzQ68BQKYxJssYUwq8B4yrsc84YK7j9nxguIgIYIAQEfEDmgGlwLEGSa5c3lepB9i2/xh3DE/Ez1dH+Z7K39eHqcMTSd13jEWpB23HUXVw5icxGthb7X62Y1ut+xhjyoECoDVVLwAngP3AHuAZY8zhmp9ARCaLSIqIpOTl5dX7i1Cup6LSMHNJOglRzbmkT3vbcVQjG9+3PZ0iQnhuaTqVlTrad2WNPfwaAFQA7YF44C4R+cUqW8aY2caYZGNMcmRkZCNHUk3h8037yMgt5M4Rifj6iO04qpH5+fpwx4hEth84zsIt+23HUb/BmdLPAapPu4hxbKt1H8ehnDDgEHA18JUxpswYkwusBJJPN7RybeUVlTy/NIOubUO5sGc723FUE7m4d3sSo5rz3NIMKnS077KcKf21QKKIxItIAHAlsKDGPguA6x23JwLLTdUZnT3A+QAiEgKcBWxviODKdX2yYR9Z+Se4c0QSPjrK9xq+PsKdI5LIzC3ks437bMdRv6LO0ncco58CLAK2AfOMMaki8rCIjHXs9gbQWkQygenAz9M6ZwHNRSSVqhePOcaYTQ39RSjXUVZRyQvLMugZ3YLRPdrYjqOa2AU929K1bSjPL8ugvKLSdhxVC6cWQTHGLAQW1tj2YLXbxVRNz6z5vMLativP9eG6bPYcLuLNSclUTeBS3sTHR5g+MonJb6/jo59y9A15Lkjn0akGU1peyYvLM+kb25JhXaJsx1GWjOzehl7RYbywLIMyHe27HC191WDeT9lLztGTTB+ZpKN8LyZSNdrPPnKSD1KybcdRNWjpqwZRXFbBrOWZnBnXisGJEbbjKMuGdonkjA4teWl5BiXlFbbjqGq09FWD+PeaPRw4Vsw0HeUr/n+0v6+gmPfX7q37CarJaOmr03aytIJZK3ZwdqfWDOqso3xV5dyECAbEhfPS8kyKy3S07yq09NVpe/vHXeQXljB9VJLtKMqFiAjTRyWRe7yEf63eYzuOctDSV6flREk5r36TxeDECM6MC7cdR7mYszq1ZlDn1rzydSZFpeW24yi09NVpeuuHXRw+Ucpdo7rYjqJc1F2jksgvLOWfq3bbjqLQ0len4VhxGbO/zWJ41yj6xra0HUe5qP4dwzkvKZLXvtlBYYmO9m3T0lenbM73uyg4Wca0kXosX/22aSOTOFJUxlsrd9qO4vW09NUpKSgq4x/fZzG6Rxt6RofZjqNcXN/YlozoFsXsb7MoOFlmO45X09JXp+T177I4XlzOnSN0lK+cc+eIJI4Vl/Pm9zrat0lLX9Xb4ROlzFm5k4t6t6Nbuxa24yg30TM6jDE92vLm9zs5WlRqO47X0tJX9fbatzsoKqtg2ohE21GUm5k2MonC0nJe/y7LdhSvpaWv6iXveAn//GE34/q0JyEq1HYc5Wa6tA3lol7tmLNyF4cKS2zH8Upa+qpeXv1mB6UVldyhx/LVKbpzRBLFZRW89q2O9m3Q0ldOO3ismHd+3M1lZ0QTHxFiO45yUwlRzRnfN5p/rtpF7vFi23G8jpa+ctqsFZlUVBqmDtdj+er0TB2eSFmF4ZWvd9iO4nW09JVTco6e5L01e7k8OZbY8GDbcZSbi4sIYUK/aP61eg/7C07ajuNVtPSVU15angnAlPMTLCdRnuL28xOprDS8vEJH+01JS1/Vac+hIj5I2cuVA2KJbtnMdhzlIWLDg7nizFjeW7uH7CNFtuN4DadKX0TGiEiaiGSKyL21PB4oIu87Hl8tInHVHustIqtEJFVENotIUMPFV03hxeUZ+PgItw3TUb5qWFOGJSAIs1Zk2o7iNeosfRHxBWYBFwDdgatEpHuN3W4CjhhjEoCZwJOO5/oB7wB/NMb0AIYCuvCGG9mZf4KPfsrhmoEdadNCX69Vw2rfshlXDYjlg5Rs9hzS0X5TcGakPwDINMZkGWNKgfeAcTX2GQfMddyeDwyXqguljgI2GWM2AhhjDhlj9LppbuT5pekE+Ppwy9DOtqMoD3XbsAR8fYTnl2XYjuIVnCn9aKD6lY2zHdtq3ccYUw4UAK2BJMCIyCIRWS8id59+ZNVUMnOP8+nGfVw3qCORoYG24ygPFdUiiGvP6sjHP2WTlVdoO47Ha+wTuX7AucDvHX9fKiLDa+4kIpNFJEVEUvLy8ho5knLWzKUZBPv7cvMQHeWrxvXHoZ0J9PPV0X4TcKb0c4DYavdjHNtq3cdxHD8MOETVbwXfGmPyjTFFwEKgX81PYIyZbYxJNsYkR0ZG1v+rUA1u2/5jfLFpPzecE094SIDtOMrDRTQP5PpBcSzYuI/0g8dtx/FozpT+WiBRROJFJAC4ElhQY58FwPWO2xOB5cYYAywCeolIsOPF4Dxga8NEV43puaXphAb68YfBnWxHUV7i5iGdCPb35fmlOtpvTHWWvuMY/RSqCnwbMM8YkyoiD4vIWMdubwCtRSQTmA7c63juEWAGVS8cG4D1xpgvGv7LUA1pS04Bi1IPctPgeMKC/W3HUV6iVUgAN54bzxeb97N13zHbcTyWVA3IXUdycrJJSUmxHcOr3fTWWlJ2H+G7e4bRIkhLXzWdgqIyzn1qOWd1as3r1yXbjuNWRGSdMabOfzR9R676Lz/tOcKy7blMHtJJC181ubBgf/4wuBNLth5kc3aB7TgeSUtf/YcxhhlL0gkPCWDSoDjbcZSXuuGcOFoG+/PskjTbUTySlr76j0WpB/kuI5/bhiUQEuhnO47yUqFB/tw6tDNfp+WxZOtB23E8jpa+AuBESTl//yyVrm1Duf7sjrbjKC93wznxJLVpzt8WpFJUWm47jkfR0ldA1RTN/QXFPHZpL/x89dtC2eXv68Oj43uRc/QkLyzTxdgakv50K7buO8abK3dx1YAO9O/YynYcpQAYEB/OFckx/OO7LNIO6Bu2GoqWvperrDTc/8lmWjbz554xXWzHUeq/3HtBN0KD/PjrJ5uprHSt6eXuSkvfy723di8/7TnK/Rd1o2WwLregXEt4SAD3XdiNtbuOMH9dtu04HkFL34vlF5bwxJfbOKtTOJeeUXPhVKVcw8R+MQyIC+fxL7dx+ESp7ThuT0vfiz2+cBsnyyp4dHxPqi5/oJTr8fERHr20J4XF5Tzx5Tbbcdyelr6X+mFHPh+tz+HmIZ1JiAq1HUep35TUJpT/GdyJeSnZrNl52HYct6al74VKyiv46ydb6BAezJTz9bq3yj1MHZ5AdMtm/PWTzZSWV9qO47a09L3Q699mkZV3gofH9SDI39d2HKWcEhzgx8PjepB+sJA3vt9pO47b0tL3MrsPneDF5Zlc2KstQ7tE2Y6jVL0M79aG0T3a8PyydPYe1gupnwotfS9ijOHBT1Px8xEevLiH7ThKnZKHLumBjwh/W5CKqy0N7w609L3Il1sO8E16HneN6kLbsCDbcZQ6Je1bNmPaiCSWbc9lsS7IVm9a+l7ieHEZf/8slR7tW3CdLqim3Nykc+Lo2jaUvy1I5USJLshWH1r6XmLGknRyj5fogmrKI/j7+vDYpb3YX1DMc0vTbcdxK/rT7wW25BQw94dd/H5gB/rGtrQdR6kG0b9jK64a0IE3V+7Sa+rWg5a+h6uoNNz/8WbCQwL48+iutuMo1aDuGdOFls38dUG2etDS93DvrtnDxuwCHri4O2HN9Jq3yrO0DA7g/ou6sX7PUd5P2Ws7jltwqvRFZIyIpIlIpojcW8vjgSLyvuPx1SISV+PxDiJSKCJ/apjYyhm5x4t56qvtnJPQmrF92tuOo1SjuPSMaM7qFM4TX24nv7DEdhyXV2fpi4gvMAu4AOgOXCUi3WvsdhNwxBiTAMwEnqzx+Azgy9OPq+rjsS+2UVJWySPjdEE15blEhEfH96SotJzHF+qCbHVxZqQ/AMg0xmQZY0qB94BxNfYZB8x13J4PDBdHy4jIeGAnkNowkZUzvs/I59MN+/jj0M50imxuO45SjSohKpSbh3Tmo/U5/LAj33Ycl+ZM6UcD1Q+WZTu21bqPMaYcKABai0hz4B7g76cfVTmruKyCBz7dQsfWwdw6tLPtOEo1iSnnJ9AhPJgHPtmiC7L9hsY+kfs3YKYxpvC3dhKRySKSIiIpeXl5jRzJ8732TRY780/wyLieuqCa8hpB/r48PK4HO/JO8Pp3WbbjuCxnSj8HiK12P8axrdZ9RMQPCAMOAQOBp0RkF3An8BcRmVLzExhjZhtjko0xyZGRkfX+ItT/25l/gllfZ3JJn/YMSdJ/S+VdhnaJ4sJebXlhWQZ7DumCbLVxpvTXAokiEi8iAcCVwIIa+ywArnfcnggsN1UGG2PijDFxwHPA48aYlxoou6qhakG1LQT6+vDARd1sx1HKigcv7oGfj/DAp1t0QbZa1Fn6jmP0U4BFwDZgnjEmVUQeFpGxjt3eoOoYfiYwHfjFtE7V+D7btJ/vMvL50+guRLXQBdWUd2obFsRdo7rwTXoeX245YDuOyxFXeyVMTk42KSkptmO4nYKTZYyY8Q1tWwTxyW3n4OujUzSV9yqvqGTcrJXkF5awdPp5hAZ5/hsTRWSdMSa5rv30Hbke4tnFaRwqLOHxS3tp4Suv5+dYkC33eAkzluiCbNVp6XuATdlHefvH3Vx3dhy9YsJsx1HKJfSNbck1Azsy94ddbMkpsB3HZWjpu7mKSsNfPt5MZPNApo9Ksh1HKZfyp9FdCA8J5P6PN1OhC7IBWvpu7+1Vu9iSc4wHLu5OCy84bqlUfYQ18+eBi7uxMbuAd9fssR3HJWjpu7G9h4t4ZnE6gxMjuLh3O9txlHJJY/u055yE1jz11Xayj+jcfS19N3W0qJRJc9bgI/DoeF1QTalfIyI8Nr4XADfMWUvByTLLiezS0ndDJeUVTH57HXsPn+T165Lp2DrEdiSlXFpcRAivXdufXYdOcPPbKZSUV9iOZI2WvpuprDT86YNNrNl5mKcv783ATq1tR1LKLQzqHMHTE/sEIS7WAAAOIklEQVTwY9Zh7pm/yWvfretnO4Cqn6cXp/HZxn3cM6Yr4/rWXOxUKfVbxp8RTc7Rkzy9KI2YVsH8aXQX25GanJa+G3nnx9288vUOrh7YgT+e18l2HKXc0q1DO7P3cBEvrcgkplUzrhzQwXakJqWl7yaWbTvIg59uYViXSB4e20NP3Cp1ikSER8b3ZH9BMfd/soW2YUEM7RJlO1aT0WP6bmBT9lGmvPsT3du34KWr++Hnq/9tSp0Of18fZv2+H13ahHLbv9Z71Tt2tT1c3N7DRdz4VgrhIQG8OelMQgL1lzOlGkLzQD/m3HAmYc38ufGtteQcPWk7UpPQ0ndhBUVlTJqzhtLyCt664UyiQnW5ZKUaUpsWQbx14wBOllVww5w1XjGHX0vfRVXNxU9h7+GTzL4umcQ2obYjKeWRktqE8to1/dmZf4I/vr3O46+vq6XvgiorDX/+YBOrHXPxz9K5+Eo1qkEJETw1sTersg5xz4eePYdfDxC7oGcWp7Fg4z7uHtNF5+Ir1UQuPSOGnCMneWZxOjGtmnHXKM+cw6+l72L+tXo3Lzvm4t9yXmfbcZTyKrcNSyD7yEleXJ5JdEvPnMOvpe9CVmzP5YFPdC6+Urb8PId/nwfP4ddj+i5ic3YBt727XufiK2WZv68PL1ebw5+6z7Pm8GuzuIC9h4u4ce5aWgUH8Ob1OhdfKduqz+G/YY5nzeHX0resoKiMG95aS3GZYy5+C52Lr5QraNMiiDk3DOBkqWfN4Xeq9EVkjIikiUimiNxby+OBIvK+4/HVIhLn2D5SRNaJyGbH3+c3bHz3VlJewc3vpLD70AlmX6tz8ZVyNV3ahvLatVVz+G95xzPm8NdZ+iLiC8wCLgC6A1eJSPcau90EHDHGJAAzgScd2/OBS4wxvYDrgbcbKri7M8Zw9/xN/Jh1mGcu78PZnXUuvlKuaFBCBE9O6M0POw5xrwfM4XdmpD8AyDTGZBljSoH3gHE19hkHzHXcng8MFxExxvxkjNnn2J4KNBORwIYI7u6eWZzGpxv28efROhdfKVd3Wb8Y7hqZxEc/5TBzSbrtOKfFmdKPBvZWu5/t2FbrPsaYcqAAqDl0nQCsN8aU1PwEIjJZRFJEJCUvL8/Z7G7r3dV7mLViB1cN6MCtQ3UuvlLuYMr5CfwuOZYXlmfy/to9tuOcsiY5kSsiPag65HNzbY8bY2YbY5KNMcmRkZFNEcmaFdtzecCxLv4j43QuvlLuQkR49NKeDEmK5C8fb+GbdPccoDpT+jlAbLX7MY5tte4jIn5AGHDIcT8G+Bi4zhiz43QDu7O1uw5z27vr6do2VOfiK+WGfp7Dn9QmlFvfWce63YdtR6o3Z1pnLZAoIvEiEgBcCSyosc8Cqk7UAkwElhtjjIi0BL4A7jXGrGyo0O6mrKKSGYvT+N1rq4hoHqjr4ivlxpoH+jFn0pmENw/gitd+ZOaSdMor3GdWT52l7zhGPwVYBGwD5hljUkXkYREZ69jtDaC1iGQC04Gfp3VOARKAB0Vkg+OPZ72nuQ478gqZ+MoPvLA8k0vPiOHzqefSRufiK+XW2oYF8cXUwYzr057nl2Uw4dVV7Mw/YTuWU8TVph8lJyeblJQU2zFOmzGGd1bv4bEvthLk78v/XtqLC3q1sx1LKdXAvti0n798vJnS8kr+enE3rh7Qwcq5OhFZZ4xJrms/PcbQCHKPFXP3h5v4Oi2PIUmRPD2xt47ulfJQF/VuR/+Orfjz/I3c//EWlm3L5YkJvVz2Snd6JrGBfbVlP6Of+5ZVOw7x8LgezL3hTC18pTxc27Ag5t4wgL9d0p2VmfmMee47FqcesB2rVlr6DeR4cRl/+mAjf3xnPTGtgvli6mCuOztOp2Qq5SV8fIRJ58Tz+e3n0i4siMlvr+Oe+ZsoLCm3He2/6OGdBrB212Gmvb+BfUdPcvv5CUwdnoi/TsdUyisltgnl41vP4fll6bzy9Q5WZR1i5u/60L9juO1ogI70T0tpeSVPfrWdK15bha+P8MEfB3HXqC5a+Ep5uQA/H/48uivzbj4bg+HyV1fxzKI0ylxgaqe20ylKP3ic8bNW8srXO/hdciwLpw6mf8dWtmMppVxIclw4C6cOZmL/GF5akcllL/9AZu5xq5m09OupstLw5vc7ufjF7zl4rJjZ1/bniQm99c1WSqlahQb589TEPrx6TX9yjp7kohe+Z+4Pu6yt1qlNVQ8HCor58/yNfJeRz/CuUTwxoTeRobpoqFKqbmN6tqVfx5bcPX8TDy1IZem2gzxzeZ8mn92nI30nfbZxH6Of+5aUXUd4/NJe/OP6ZC18pVS9RIUGMWfSmTw6vidrdx1m9HPfsnDz/ibNoKVfh4KTZdz53k/c/u+fiI8IYeEdg7l6oJ133Cml3J+IcM1ZHVk4dTAdw4O59V/rmT5vA8eKm+ZyjHp451dUVBqWb8/loU+3cPB4CdNGJHHbsM66MqZSqkF0imzO/FsG8dLyTF5akcnqrMPMuKIPAzs17lX0dO2dGjIOHmf++mw++SmHg8dKiI8IYebv+tI3tqW1TEopz/bTniNMe38DwQF+fH77ufj41P9Igq69Uw9Hi0r5bOM+5q/LZmN2Ab4+wtCkSB66JIbh3aII9PO1HVEp5cHO6NCKL6YO5vCJ0lMq/Prw2tIvq6jk2/Q8PlyfzdKtuZRWVNK1bSh/vagb4/pG60lapVSTCgn0a5Kp315X+tv2H+PDddl8siGH/MJSwkMC+P1ZHZjQL4Ye7VvoCVqllEfzitI/VFjCpxv28eH6bFL3HcPfVzi/axQT+sUwtEsUAX56clYp5R08tvRLyytZvj2XD9dns2J7LuWVhl7RYfztku6M7RtNeEiA7YhKKdXkPKr0jTGk7jvG/HXZfLohhyNFZUQ0D+TGc+OZ0C+GLm1DbUdUSimrPKb09x4u4n/mppB28DgBvj6M7NGGif1iGJwYoXPrlVLKwWNKv11YENGtmnHt2R25pHd7woL9bUdSSimX4zGl7+frw5uTzrQdQymlXJpTxz1EZIyIpIlIpojcW8vjgSLyvuPx1SISV+2x+xzb00RkdMNFV0opVV91lr6I+AKzgAuA7sBVItK9xm43AUeMMQnATOBJx3O7A1cCPYAxwMuOj6eUUsoCZ0b6A4BMY0yWMaYUeA8YV2OfccBcx+35wHCpepfTOOA9Y0yJMWYnkOn4eEoppSxwpvSjgb3V7mc7ttW6jzGmHCgAWjv5XKWUUk3EJeYyishkEUkRkZS8vDzbcZRSymM5U/o5QGy1+zGObbXuIyJ+QBhwyMnnYoyZbYxJNsYkR0ZGOp9eKaVUvThT+muBRBGJF5EAqk7MLqixzwLgesfticByU7VQ/wLgSsfsnnggEVjTMNGVUkrVV53z9I0x5SIyBVgE+AJvGmNSReRhIMUYswB4A3hbRDKBw1S9MODYbx6wFSgHbjPGVDTS16KUUqoOLnflLBHJA3afxoeIAPIbKE5jcPV84PoZXT0faMaG4Or5wLUydjTG1Hl83OVK/3SJSIozlwyzxdXzgetndPV8oBkbgqvnA/fIWJNLzN5RSinVNLT0lVLKi3hi6c+2HaAOrp4PXD+jq+cDzdgQXD0fuEfG/+Jxx/SVUkr9Ok8c6SullPoVHlP6dS3/bJuIxIrIChHZKiKpInKH7Uy1ERFfEflJRD63naU2ItJSROaLyHYR2SYiZ9vOVJ2ITHP8/24RkX+LSJALZHpTRHJFZEu1beEiskREMhx/t3LBjE87/p83icjHItLS1TJWe+wuETEiEmEjW314ROk7ufyzbeXAXcaY7sBZwG0umBHgDmCb7RC/4XngK2NMV6APLpRVRKKBqUCyMaYnVW9mvNJuKgDeompp8+ruBZYZYxKBZY77Nr3FLzMuAXoaY3oD6cB9TR2qhrf4ZUZEJBYYBexp6kCnwiNKH+eWf7bKGLPfGLPecfs4VWXlUiuOikgMcBHwD9tZaiMiYcAQqt4BjjGm1Bhz1G6qX/ADmjnWoAoG9lnOgzHmW6reKV9d9eXQ5wLjmzRUDbVlNMYsdqzaC/AjVWt3WfMr/45QdQ2RuwG3OEHqKaXvVks4O64sdgaw2m6SX3iOqm/eSttBfkU8kAfMcRyC+oeIhNgO9TNjTA7wDFUjvv1AgTFmsd1Uv6qNMWa/4/YBoI3NME64EfjSdoiaRGQckGOM2Wg7i7M8pfTdhog0Bz4E7jTGHLOd52cicjGQa4xZZzvLb/AD+gGvGGPOAE5g/7DEfziOi4+j6sWpPRAiItfYTVU3x+KILjtKFZH7qTo8+i/bWaoTkWDgL8CDtrPUh6eUvlNLONsmIv5UFf6/jDEf2c5TwznAWBHZRdXhsfNF5B27kX4hG8g2xvz8G9J8ql4EXMUIYKcxJs8YUwZ8BAyynOnXHBSRdgCOv3Mt56mViEwCLgZ+b1xvfnlnql7gNzp+bmKA9SLS1mqqOnhK6Tuz/LNVjstHvgFsM8bMsJ2nJmPMfcaYGGNMHFX/fsuNMS41SjXGHAD2ikgXx6bhVK3g6ir2AGeJSLDj/3s4LnSiuYbqy6FfD3xqMUutRGQMVYcbxxpjimznqckYs9kYE2WMiXP83GQD/Rzfpy7LI0rfcbLn5+WftwHzjDGpdlP9wjnAtVSNoDc4/lxoO5Qbuh34l4hsAvoCj1vO8x+O30DmA+uBzVT9fFl/x6aI/BtYBXQRkWwRuQl4AhgpIhlU/YbyhAtmfAkIBZY4fl5edcGMbkffkauUUl7EI0b6SimlnKOlr5RSXkRLXymlvIiWvlJKeREtfaWU8iJa+kop5UW09JVSyoto6SullBf5P3o+n1fH0/ZAAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "w = 2*(spread + 1)\n", "psf = np.exp(-(np.arange(-w,w)/spread)**2/2)\n", "psf = psf/psf.sum()\n", "plt.plot(psf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Randomly localize the PSF" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x_range = np.arange(0, 100)" ] }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [], "source": [ "center = np.random.choice(x_range[10:-10])\n", "target = np.zeros(x_range.shape)\n", "target[center] = 1\n", "clean_signal = np.convolve(psf, target, mode='same')" ] }, { "cell_type": "code", "execution_count": 103, "metadata": {}, "outputs": [], "source": [ "n_photon = 30\n", "photon_signal = np.random.poisson(n_photon * clean_signal)" ] }, { "cell_type": "code", "execution_count": 104, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Noisy Measurement')" ] }, "execution_count": 104, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAELZJREFUeJzt3W2QZFV9x/Hvj90NKqALMkFZWEaDEhFLIYsaNcagUWCJ5IUpITGYKnXzQiIYjUJZlagxCSY+QTSWKxAQFYmAStgoEoUoVRHcVUQeI8oiILiggEB8YPGfF/cONpOZnV6Yntkz8/1UdXXfe0/f/p85u7++ffremVQVkqR2bDffBUiSto7BLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbj1iSzyd59XzXIS0WBrdIsjHJpiQ7DKx7bZKLh3l+VR1SVafPck3V17R0YN2yfp0XH0wjycVJXjvfdWi0DG5NWAIcM99FTHIncMjA8iH9um3G4BuLNFcMbk34J+DNSZZPtTHJ85J8Pcnd/f3zBrY9eJSXZO8k/9W3uyPJWf36DyV576R9npfkjVuo6QzgqIHlo4CPTdrH45KckuTWJLckeVeSJf2230jy5SQ/6mv5xGD/kry1f849Sa5L8uJ+/WlJ3jXQ7kVJbh5Y3tg/9wrgviRLk+ye5Jwktye5IckbBtq/Pcmnk3y8f61vJ3lqkuP7TxA3JXnpkH36sySXJHlPkjv71zqk3/Z3wO8AH0xyb5IPbuFnq4YZ3JqwHrgYePPkDUl2AdYBJwGPB94HrEvy+Cn287fAF4GdgT2Af+7Xnw4cmWS7fp+7Ai8BPrmFmj4LvDDJ8iQ704XS5ya1OQ3YDOwN7A+8FJiYKgjwD8DuwNOAPYG396+/D3A0cGBV7QS8DNi4hVomOxJYDSwHfgn8O/AtYAXwYuDYJC8baP8HdG9EOwPfBC6g+/+3Angn8JEh+wTwHOA6YFfgH4FTkqSq3gZ8FTi6qnasqqO3oj9qiMGtQX8N/EWSsUnrVwPfqaozqmpzVZ0JXEsXRpPdD+wF7F5VP6uqSwCq6jLgbrpQAzgCuLiqfriFen5GF4iv7G/n9esASLIbcChwbFXdV1WbgPf3+6aqrq+qC6vq51V1O90bzu/2T38A2B7YN8myqtpYVd+d8Sf0KydV1U1V9VPgQGCsqt5ZVb+oqu8BH52oo/fVqrqgqjYDnwbGgBOq6n7gU8B4/wa1xT71bqyqj1bVA3RviE8EdtuK2tU45+f0oKq6Msn5wHHANQObdgdunNT8RrqjxcneQnfUfVmSO4H3VtWp/bbTgVcBF/b3Jw5R1sfojpoDvHXStr2AZcCtSSbWbQfcBA8G+4l0R+o79dvu7Pt6fZJj6Y7An57kAuAvq+oHQ9TExGsM1LF7krsG1i2hO/qdMPgG9VPgjj54J5YBdqT7WU/bp95tEw+q6n/7djsOWbcWAI+4NdnfAK/joaH8A7pwGrQSuGXyk6vqtqp6XVXtDvw58C9J9u43fxw4PMkz6aYuPjtEPV/lV0eUl0zadhPwc2DXqlre3x5bVU/vt/89UMAzquqxdG8WD6ZhVX2yql7Q962Ad/eb7gMeM/A6T5iirsEzW24CbhioYXlV7VRVhw7Rv8lm6tNMPONmETC49RBVdT1wFvCGgdX/ATw1yR/3X8S9EtgXOH/y85P8UZI9+sU76YLkl/2+bwa+TjfXe04/zTBTPUU3JfPymvQ7iKvqVrr59PcmeWyS7fovJCemQ3YC7gXuTrIC+KuBOvdJclCS7emmX346USdwOXBokl2SPAE4doYyLwPu6b+wfHSSJUn2S3LgTP2bor8z9WkmPwSevLWvq7YY3JrKO4EHz+muqh8BhwFvAn5ENx1yWFXdMcVzDwQuTXIv3Zz0Mf2c74TTgWfQhfdQquqqqrpqms1HAb8GXE33RnE23RE6wDuAA+jm1tcB5w48b3vgBOAOuqmHXweO77edQfdF40a6ED1rhvoeoPv5PAu4od/nycDjhuzi1vRpJicCr+jPODnpYb6+tnHxDyloLiV5Id2UyV6Tj6AlDccjbs2ZJMvoLvI52dCWHj6DW3MiydOAu+g+8n9gnsuRmuZUiSQ1xiNuSWrMSC7A2XXXXWt8fHwUu5akBWnDhg13VNXkq5anNJLgHh8fZ/369aPYtSQtSEkmX508LadKJKkxBrckNcbglqTGGNyS1BiDW5IaY3BLUmOGOh0wyUbgHrq/GrK5qlaNsihJ0vS25jzu35vm13hKkuaQUyWS1Jhhj7gL+GKSAj5SVWsnN0iyBlgDsHLlytmrUJpF48ete/DxxhNWz2Ml0sM37BH3C6rqAOAQ4PX9L8N/iKpaW1WrqmrV2NhQl9tLkh6GoYK7qm7p7zcBnwGePcqiJEnTmzG4k+yQZKeJx8BLgStHXZgkaWrDzHHvBnwmyUT7T1bVF0ZalSRpWjMGd/8Xup85B7VIkobg6YCS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4JakxhjcktQYg1uSGmNwS1JjDG5JaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbkhpjcEtSYwxuSWqMwS1JjTG4JakxBrckNcbglqTGGNyS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4Jakxgwd3EmWJPlmkvNHWZAkacu25oj7GOCaURUiSRrOUMGdZA9gNXDyaMuRJM1k6ZDtPgC8BdhpugZJ1gBrAFauXPnIK5O20vhx66Zcv/GE1XNciTRaMx5xJzkM2FRVG7bUrqrWVtWqqlo1NjY2awVKkh5qmKmS5wMvT7IR+BRwUJKPj7QqSdK0Zgzuqjq+qvaoqnHgCODLVfWqkVcmSZqS53FLUmOG/XISgKq6GLh4JJVIkobiEbckNcbglqTGGNyS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4JakxhjcktQYg1uSGmNwS1JjDG5JaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbkhpjcEtSYwxuSWqMwS1JjTG4JakxBrckNcbglqTGGNyS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMTMGd5JHJbksybeSXJXkHXNRmCRpakuHaPNz4KCqujfJMuCSJJ+vqq+NuDZJ0hRmDO6qKuDefnFZf6tRFiVJmt5Qc9xJliS5HNgEXFhVl462LEnSdIaZKqGqHgCelWQ58Jkk+1XVlYNtkqwB1gCsXLly1gvV4jN+3Lop1288YfWs73+29inNha06q6Sq7gIuAg6eYtvaqlpVVavGxsZmqz5J0iTDnFUy1h9pk+TRwO8D1466MEnS1IaZKnkicHqSJXRB/29Vdf5oy5IkTWeYs0quAPafg1okSUPwyklJaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbkhpjcEtSYwxuSWqMwS1JjTG4JakxBrckNcbglqTGGNyS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4JakxhjcktQYg1uSGmNwS1JjDG5JaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbkhpjcEtSYwxuSWrMjMGdZM8kFyW5OslVSY6Zi8IkSVNbOkSbzcCbquobSXYCNiS5sKquHnFtkqQpzHjEXVW3VtU3+sf3ANcAK0ZdmCRpaqmq4Rsn48BXgP2q6ieTtq0B1gCsXLnyt2688cbZq1KL0vhx6+bldTeesHpeXleLW5INVbVqmLZDfzmZZEfgHODYyaENUFVrq2pVVa0aGxsbvlpJ0lYZKriTLKML7U9U1bmjLUmStCXDnFUS4BTgmqp63+hLkiRtyTBH3M8H/hQ4KMnl/e3QEdclSZrGjKcDVtUlQOagFknSELxyUpIaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4JakxhjcktQYg1uSGmNwS1JjDG5JaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbkhpjcEtSYwxuSWqMwS1JjTG4JakxBrckNcbglqTGGNyS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4JakxhjcktSYGYM7yalJNiW5ci4KkiRt2TBH3KcBB4+4DknSkGYM7qr6CvDjOahFkjSEWZvjTrImyfok62+//fbZ2q0kaZJZC+6qWltVq6pq1djY2GztVpI0iWeVSFJjDG5JaswwpwOeCfw3sE+Sm5O8ZvRlSZKms3SmBlV15FwUIkkajlMlktQYg1uSGmNwS1JjDG5JaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUGINbkhpjcEtSYwxuSWqMwS1JjTG4JakxBrckNcbglqTGGNyS1BiDW5IaY3BLUmMMbklqjMEtSY0xuCWpMQa3JDXG4JakxhjcktQYg1uSGmNwS1JjDG5JaozBLUmNMbglqTEGtyQ1xuCWpMYY3JLUmKGCO8nBSa5Lcn2S40ZdlCRpejMGd5IlwIeAQ4B9gSOT7DvqwiRJUxvmiPvZwPVV9b2q+gXwKeDw0ZYlSZrO0iHarABuGli+GXjO5EZJ1gBr+sV7k1z3COraFbjjETy/RfZ5G5F3j3T322SfR8w+D2evYRsOE9xDqaq1wNrZ2FeS9VW1ajb21Qr7vDjY58Vh1H0eZqrkFmDPgeU9+nWSpHkwTHB/HXhKkicl+TXgCOC80ZYlSZrOjFMlVbU5ydHABcAS4NSqumrEdc3KlEtj7PPiYJ8Xh5H2OVU1yv1LkmaZV05KUmMMbklqzDYX3Ivh8vokeya5KMnVSa5Kcky/fpckFyb5Tn+/83zXOpuSLEnyzSTn98tPSnJpP9Zn9V9+LxhJlic5O8m1Sa5J8tuLYIzf2P+bvjLJmUketdDGOcmpSTYluXJg3ZTjms5Jfd+vSHLAbNSwTQX3Irq8fjPwpqraF3gu8Pq+n8cBX6qqpwBf6pcXkmOAawaW3w28v6r2Bu4EXjMvVY3OicAXquo3gWfS9X3BjnGSFcAbgFVVtR/dyQxHsPDG+TTg4EnrphvXQ4Cn9Lc1wIdno4BtKrhZJJfXV9WtVfWN/vE9dP+hV9D19fS+2enAH85PhbMvyR7AauDkfjnAQcDZfZOF1t/HAS8ETgGoql9U1V0s4DHuLQUenWQp8BjgVhbYOFfVV4AfT1o93bgeDnysOl8Dlid54iOtYVsL7qkur18xT7XMiSTjwP7ApcBuVXVrv+k2YLd5KmsUPgC8Bfhlv/x44K6q2twvL7SxfhJwO/Cv/fTQyUl2YAGPcVXdArwH+D5dYN8NbGBhj/OE6cZ1JJm2rQX3opJkR+Ac4Niq+sngturO01wQ52omOQzYVFUb5ruWObQUOAD4cFXtD9zHpGmRhTTGAP287uF0b1q7Azvw/6cUFry5GNdtLbgXzeX1SZbRhfYnqurcfvUPJz5G9feb5qu+WfZ84OVJNtJNfx1EN/+7vP9IDQtvrG8Gbq6qS/vls+mCfKGOMcBLgBuq6vaquh84l27sF/I4T5huXEeSadtacC+Ky+v7+d1TgGuq6n0Dm84DXt0/fjXwubmubRSq6viq2qOqxunG9MtV9SfARcAr+mYLpr8AVXUbcFOSffpVLwauZoGOce/7wHOTPKb/Nz7R5wU7zgOmG9fzgKP6s0ueC9w9MKXy8FXVNnUDDgX+B/gu8Lb5rmdEfXwB3UepK4DL+9uhdPO+XwK+A/wnsMt81zqCvr8IOL9//GTgMuB64NPA9vNd3yz39VnA+n6cPwvsvNDHGHgHcC1wJXAGsP1CG2fgTLo5/PvpPlm9ZrpxBUJ3ptx3gW/TnXHziGvwkndJasy2NlUiSZqBwS1JjTG4JakxBrckNcbglqTGGNyS1BiDW5Ia83+hsjxO1iL93QAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.bar(x_range, photon_signal, width=1)\n", "plt.title(\"Noisy Measurement\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's the best estimator of the location of the center?" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }