Skip to content

Instantly share code, notes, and snippets.

@bryanchow
Created January 20, 2012 20:16
Show Gist options
  • Select an option

  • Save bryanchow/1649353 to your computer and use it in GitHub Desktop.

Select an option

Save bryanchow/1649353 to your computer and use it in GitHub Desktop.

Revisions

  1. bryanchow revised this gist Jan 28, 2012. 1 changed file with 3 additions and 0 deletions.
    3 changes: 3 additions & 0 deletions sha256.js
    Original file line number Diff line number Diff line change
    @@ -1,3 +1,6 @@
    // Modified by bryanchow for namespace control and higher compressibility
    // See https://gist.github.com/1649353 for full revision history from original

    /*
    * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
    * in FIPS 180-2
  2. bryanchow revised this gist Jan 28, 2012. 1 changed file with 13 additions and 0 deletions.
    13 changes: 13 additions & 0 deletions sha256.js
    Original file line number Diff line number Diff line change
    @@ -8,6 +8,8 @@
    * Also http://anmar.eu.org/projects/jssha2/
    */

    var sha256 = (function() {

    /*
    * Configurable variables. You may need to tweak these to be compatible with
    * the server-side, but the defaults work in most cases.
    @@ -335,3 +337,14 @@ function safe_add (x, y)
    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
    return (msw << 16) | (lsw & 0xFFFF);
    }

    return {
    hex: hex_sha256,
    b64: b64_hmac_sha256,
    any: any_hmac_sha256,
    hex_hmac: hex_hmac_sha256,
    b64_hmac: b64_hmac_sha256,
    any_hmac: any_hmac_sha256
    };

    }());
  3. bryanchow revised this gist Jan 20, 2012. 1 changed file with 337 additions and 337 deletions.
    674 changes: 337 additions & 337 deletions sha256.js
    Original file line number Diff line number Diff line change
    @@ -1,337 +1,337 @@
    /*
    * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
    * in FIPS 180-2
    * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
    * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
    * Distributed under the BSD License
    * See http://pajhome.org.uk/crypt/md5 for details.
    * Also http://anmar.eu.org/projects/jssha2/
    */

    /*
    * Configurable variables. You may need to tweak these to be compatible with
    * the server-side, but the defaults work in most cases.
    */
    var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
    var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */

    /*
    * These are the functions you'll usually want to call
    * They take string arguments and return either hex or base-64 encoded strings
    */
    function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
    function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
    function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
    function hex_hmac_sha256(k, d)
    { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
    function b64_hmac_sha256(k, d)
    { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
    function any_hmac_sha256(k, d, e)
    { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }

    /*
    * Perform a simple self-test to see if the VM is working
    */
    function sha256_vm_test()
    {
    return hex_sha256("abc").toLowerCase() ==
    "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
    }

    /*
    * Calculate the sha256 of a raw string
    */
    function rstr_sha256(s)
    {
    return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
    }

    /*
    * Calculate the HMAC-sha256 of a key and some data (raw strings)
    */
    function rstr_hmac_sha256(key, data)
    {
    var bkey = rstr2binb(key);
    if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);

    var ipad = Array(16), opad = Array(16);
    for(var i = 0; i < 16; i++)
    {
    ipad[i] = bkey[i] ^ 0x36363636;
    opad[i] = bkey[i] ^ 0x5C5C5C5C;
    }

    var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
    return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
    }

    /*
    * Convert a raw string to a hex string
    */
    function rstr2hex(input)
    {
    try { hexcase } catch(e) { hexcase=0; }
    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
    var output = "";
    var x;
    for(var i = 0; i < input.length; i++)
    {
    x = input.charCodeAt(i);
    output += hex_tab.charAt((x >>> 4) & 0x0F)
    + hex_tab.charAt( x & 0x0F);
    }
    return output;
    }

    /*
    * Convert a raw string to a base-64 string
    */
    function rstr2b64(input)
    {
    try { b64pad } catch(e) { b64pad=''; }
    var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    var output = "";
    var len = input.length;
    for(var i = 0; i < len; i += 3)
    {
    var triplet = (input.charCodeAt(i) << 16)
    | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
    | (i + 2 < len ? input.charCodeAt(i+2) : 0);
    for(var j = 0; j < 4; j++)
    {
    if(i * 8 + j * 6 > input.length * 8) output += b64pad;
    else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
    }
    }
    return output;
    }

    /*
    * Convert a raw string to an arbitrary string encoding
    */
    function rstr2any(input, encoding)
    {
    var divisor = encoding.length;
    var remainders = Array();
    var i, q, x, quotient;

    /* Convert to an array of 16-bit big-endian values, forming the dividend */
    var dividend = Array(Math.ceil(input.length / 2));
    for(i = 0; i < dividend.length; i++)
    {
    dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
    }

    /*
    * Repeatedly perform a long division. The binary array forms the dividend,
    * the length of the encoding is the divisor. Once computed, the quotient
    * forms the dividend for the next step. We stop when the dividend is zero.
    * All remainders are stored for later use.
    */
    while(dividend.length > 0)
    {
    quotient = Array();
    x = 0;
    for(i = 0; i < dividend.length; i++)
    {
    x = (x << 16) + dividend[i];
    q = Math.floor(x / divisor);
    x -= q * divisor;
    if(quotient.length > 0 || q > 0)
    quotient[quotient.length] = q;
    }
    remainders[remainders.length] = x;
    dividend = quotient;
    }

    /* Convert the remainders to the output string */
    var output = "";
    for(i = remainders.length - 1; i >= 0; i--)
    output += encoding.charAt(remainders[i]);

    /* Append leading zero equivalents */
    var full_length = Math.ceil(input.length * 8 /
    (Math.log(encoding.length) / Math.log(2)))
    for(i = output.length; i < full_length; i++)
    output = encoding[0] + output;

    return output;
    }

    /*
    * Encode a string as utf-8.
    * For efficiency, this assumes the input is valid utf-16.
    */
    function str2rstr_utf8(input)
    {
    var output = "";
    var i = -1;
    var x, y;

    while(++i < input.length)
    {
    /* Decode utf-16 surrogate pairs */
    x = input.charCodeAt(i);
    y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
    if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
    {
    x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
    i++;
    }

    /* Encode output as utf-8 */
    if(x <= 0x7F)
    output += String.fromCharCode(x);
    else if(x <= 0x7FF)
    output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
    0x80 | ( x & 0x3F));
    else if(x <= 0xFFFF)
    output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
    0x80 | ((x >>> 6 ) & 0x3F),
    0x80 | ( x & 0x3F));
    else if(x <= 0x1FFFFF)
    output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
    0x80 | ((x >>> 12) & 0x3F),
    0x80 | ((x >>> 6 ) & 0x3F),
    0x80 | ( x & 0x3F));
    }
    return output;
    }

    /*
    * Encode a string as utf-16
    */
    function str2rstr_utf16le(input)
    {
    var output = "";
    for(var i = 0; i < input.length; i++)
    output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
    (input.charCodeAt(i) >>> 8) & 0xFF);
    return output;
    }

    function str2rstr_utf16be(input)
    {
    var output = "";
    for(var i = 0; i < input.length; i++)
    output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
    input.charCodeAt(i) & 0xFF);
    return output;
    }

    /*
    * Convert a raw string to an array of big-endian words
    * Characters >255 have their high-byte silently ignored.
    */
    function rstr2binb(input)
    {
    var output = Array(input.length >> 2);
    for(var i = 0; i < output.length; i++)
    output[i] = 0;
    for(var i = 0; i < input.length * 8; i += 8)
    output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
    return output;
    }

    /*
    * Convert an array of big-endian words to a string
    */
    function binb2rstr(input)
    {
    var output = "";
    for(var i = 0; i < input.length * 32; i += 8)
    output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
    return output;
    }

    /*
    * Main sha256 function, with its support functions
    */
    function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
    function sha256_R (X, n) {return ( X >>> n );}
    function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
    function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
    function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
    function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
    function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
    function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
    function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
    function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
    function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
    function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}

    var sha256_K = new Array
    (
    1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
    -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
    1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
    264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
    -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
    113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
    1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
    -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
    430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
    1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
    -1866530822, -1538233109, -1090935817, -965641998
    );

    function binb_sha256(m, l)
    {
    var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
    1359893119, -1694144372, 528734635, 1541459225);
    var W = new Array(64);
    var a, b, c, d, e, f, g, h;
    var i, j, T1, T2;

    /* append padding */
    m[l >> 5] |= 0x80 << (24 - l % 32);
    m[((l + 64 >> 9) << 4) + 15] = l;

    for(i = 0; i < m.length; i += 16)
    {
    a = HASH[0];
    b = HASH[1];
    c = HASH[2];
    d = HASH[3];
    e = HASH[4];
    f = HASH[5];
    g = HASH[6];
    h = HASH[7];

    for(j = 0; j < 64; j++)
    {
    if (j < 16) W[j] = m[j + i];
    else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
    sha256_Gamma0256(W[j - 15])), W[j - 16]);

    T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
    sha256_K[j]), W[j]);
    T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
    h = g;
    g = f;
    f = e;
    e = safe_add(d, T1);
    d = c;
    c = b;
    b = a;
    a = safe_add(T1, T2);
    }

    HASH[0] = safe_add(a, HASH[0]);
    HASH[1] = safe_add(b, HASH[1]);
    HASH[2] = safe_add(c, HASH[2]);
    HASH[3] = safe_add(d, HASH[3]);
    HASH[4] = safe_add(e, HASH[4]);
    HASH[5] = safe_add(f, HASH[5]);
    HASH[6] = safe_add(g, HASH[6]);
    HASH[7] = safe_add(h, HASH[7]);
    }
    return HASH;
    }

    function safe_add (x, y)
    {
    var lsw = (x & 0xFFFF) + (y & 0xFFFF);
    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
    return (msw << 16) | (lsw & 0xFFFF);
    }
    /*
    * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
    * in FIPS 180-2
    * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
    * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
    * Distributed under the BSD License
    * See http://pajhome.org.uk/crypt/md5 for details.
    * Also http://anmar.eu.org/projects/jssha2/
    */

    /*
    * Configurable variables. You may need to tweak these to be compatible with
    * the server-side, but the defaults work in most cases.
    */
    var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
    var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */

    /*
    * These are the functions you'll usually want to call
    * They take string arguments and return either hex or base-64 encoded strings
    */
    function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
    function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
    function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
    function hex_hmac_sha256(k, d)
    { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
    function b64_hmac_sha256(k, d)
    { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
    function any_hmac_sha256(k, d, e)
    { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }

    /*
    * Perform a simple self-test to see if the VM is working
    */
    function sha256_vm_test()
    {
    return hex_sha256("abc").toLowerCase() ==
    "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
    }

    /*
    * Calculate the sha256 of a raw string
    */
    function rstr_sha256(s)
    {
    return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
    }

    /*
    * Calculate the HMAC-sha256 of a key and some data (raw strings)
    */
    function rstr_hmac_sha256(key, data)
    {
    var bkey = rstr2binb(key);
    if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);

    var ipad = Array(16), opad = Array(16);
    for(var i = 0; i < 16; i++)
    {
    ipad[i] = bkey[i] ^ 0x36363636;
    opad[i] = bkey[i] ^ 0x5C5C5C5C;
    }

    var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
    return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
    }

    /*
    * Convert a raw string to a hex string
    */
    function rstr2hex(input)
    {
    try { hexcase } catch(e) { hexcase=0; }
    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
    var output = "";
    var x;
    for(var i = 0; i < input.length; i++)
    {
    x = input.charCodeAt(i);
    output += hex_tab.charAt((x >>> 4) & 0x0F)
    + hex_tab.charAt( x & 0x0F);
    }
    return output;
    }

    /*
    * Convert a raw string to a base-64 string
    */
    function rstr2b64(input)
    {
    try { b64pad } catch(e) { b64pad=''; }
    var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    var output = "";
    var len = input.length;
    for(var i = 0; i < len; i += 3)
    {
    var triplet = (input.charCodeAt(i) << 16)
    | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
    | (i + 2 < len ? input.charCodeAt(i+2) : 0);
    for(var j = 0; j < 4; j++)
    {
    if(i * 8 + j * 6 > input.length * 8) output += b64pad;
    else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
    }
    }
    return output;
    }

    /*
    * Convert a raw string to an arbitrary string encoding
    */
    function rstr2any(input, encoding)
    {
    var divisor = encoding.length;
    var remainders = Array();
    var i, q, x, quotient;

    /* Convert to an array of 16-bit big-endian values, forming the dividend */
    var dividend = Array(Math.ceil(input.length / 2));
    for(i = 0; i < dividend.length; i++)
    {
    dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
    }

    /*
    * Repeatedly perform a long division. The binary array forms the dividend,
    * the length of the encoding is the divisor. Once computed, the quotient
    * forms the dividend for the next step. We stop when the dividend is zero.
    * All remainders are stored for later use.
    */
    while(dividend.length > 0)
    {
    quotient = Array();
    x = 0;
    for(i = 0; i < dividend.length; i++)
    {
    x = (x << 16) + dividend[i];
    q = Math.floor(x / divisor);
    x -= q * divisor;
    if(quotient.length > 0 || q > 0)
    quotient[quotient.length] = q;
    }
    remainders[remainders.length] = x;
    dividend = quotient;
    }

    /* Convert the remainders to the output string */
    var output = "";
    for(i = remainders.length - 1; i >= 0; i--)
    output += encoding.charAt(remainders[i]);

    /* Append leading zero equivalents */
    var full_length = Math.ceil(input.length * 8 /
    (Math.log(encoding.length) / Math.log(2)))
    for(i = output.length; i < full_length; i++)
    output = encoding[0] + output;

    return output;
    }

    /*
    * Encode a string as utf-8.
    * For efficiency, this assumes the input is valid utf-16.
    */
    function str2rstr_utf8(input)
    {
    var output = "";
    var i = -1;
    var x, y;

    while(++i < input.length)
    {
    /* Decode utf-16 surrogate pairs */
    x = input.charCodeAt(i);
    y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
    if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
    {
    x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
    i++;
    }

    /* Encode output as utf-8 */
    if(x <= 0x7F)
    output += String.fromCharCode(x);
    else if(x <= 0x7FF)
    output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
    0x80 | ( x & 0x3F));
    else if(x <= 0xFFFF)
    output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
    0x80 | ((x >>> 6 ) & 0x3F),
    0x80 | ( x & 0x3F));
    else if(x <= 0x1FFFFF)
    output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
    0x80 | ((x >>> 12) & 0x3F),
    0x80 | ((x >>> 6 ) & 0x3F),
    0x80 | ( x & 0x3F));
    }
    return output;
    }

    /*
    * Encode a string as utf-16
    */
    function str2rstr_utf16le(input)
    {
    var output = "";
    for(var i = 0; i < input.length; i++)
    output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
    (input.charCodeAt(i) >>> 8) & 0xFF);
    return output;
    }

    function str2rstr_utf16be(input)
    {
    var output = "";
    for(var i = 0; i < input.length; i++)
    output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
    input.charCodeAt(i) & 0xFF);
    return output;
    }

    /*
    * Convert a raw string to an array of big-endian words
    * Characters >255 have their high-byte silently ignored.
    */
    function rstr2binb(input)
    {
    var output = Array(input.length >> 2);
    for(var i = 0; i < output.length; i++)
    output[i] = 0;
    for(var i = 0; i < input.length * 8; i += 8)
    output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
    return output;
    }

    /*
    * Convert an array of big-endian words to a string
    */
    function binb2rstr(input)
    {
    var output = "";
    for(var i = 0; i < input.length * 32; i += 8)
    output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
    return output;
    }

    /*
    * Main sha256 function, with its support functions
    */
    function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
    function sha256_R (X, n) {return ( X >>> n );}
    function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
    function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
    function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
    function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
    function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
    function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
    function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
    function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
    function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
    function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}

    var sha256_K = new Array
    (
    1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
    -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
    1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
    264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
    -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
    113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
    1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
    -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
    430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
    1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
    -1866530822, -1538233109, -1090935817, -965641998
    );

    function binb_sha256(m, l)
    {
    var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
    1359893119, -1694144372, 528734635, 1541459225);
    var W = new Array(64);
    var a, b, c, d, e, f, g, h;
    var i, j, T1, T2;

    /* append padding */
    m[l >> 5] |= 0x80 << (24 - l % 32);
    m[((l + 64 >> 9) << 4) + 15] = l;

    for(i = 0; i < m.length; i += 16)
    {
    a = HASH[0];
    b = HASH[1];
    c = HASH[2];
    d = HASH[3];
    e = HASH[4];
    f = HASH[5];
    g = HASH[6];
    h = HASH[7];

    for(j = 0; j < 64; j++)
    {
    if (j < 16) W[j] = m[j + i];
    else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
    sha256_Gamma0256(W[j - 15])), W[j - 16]);

    T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
    sha256_K[j]), W[j]);
    T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
    h = g;
    g = f;
    f = e;
    e = safe_add(d, T1);
    d = c;
    c = b;
    b = a;
    a = safe_add(T1, T2);
    }

    HASH[0] = safe_add(a, HASH[0]);
    HASH[1] = safe_add(b, HASH[1]);
    HASH[2] = safe_add(c, HASH[2]);
    HASH[3] = safe_add(d, HASH[3]);
    HASH[4] = safe_add(e, HASH[4]);
    HASH[5] = safe_add(f, HASH[5]);
    HASH[6] = safe_add(g, HASH[6]);
    HASH[7] = safe_add(h, HASH[7]);
    }
    return HASH;
    }

    function safe_add (x, y)
    {
    var lsw = (x & 0xFFFF) + (y & 0xFFFF);
    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
    return (msw << 16) | (lsw & 0xFFFF);
    }
  4. bryanchow revised this gist Jan 20, 2012. 2 changed files with 337 additions and 1 deletion.
    1 change: 0 additions & 1 deletion gistfile1.txt
    Original file line number Diff line number Diff line change
    @@ -1 +0,0 @@
    //
    337 changes: 337 additions & 0 deletions sha256.js
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,337 @@
    /*
    * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
    * in FIPS 180-2
    * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
    * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
    * Distributed under the BSD License
    * See http://pajhome.org.uk/crypt/md5 for details.
    * Also http://anmar.eu.org/projects/jssha2/
    */

    /*
    * Configurable variables. You may need to tweak these to be compatible with
    * the server-side, but the defaults work in most cases.
    */
    var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
    var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */

    /*
    * These are the functions you'll usually want to call
    * They take string arguments and return either hex or base-64 encoded strings
    */
    function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
    function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
    function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
    function hex_hmac_sha256(k, d)
    { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
    function b64_hmac_sha256(k, d)
    { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
    function any_hmac_sha256(k, d, e)
    { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }

    /*
    * Perform a simple self-test to see if the VM is working
    */
    function sha256_vm_test()
    {
    return hex_sha256("abc").toLowerCase() ==
    "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
    }

    /*
    * Calculate the sha256 of a raw string
    */
    function rstr_sha256(s)
    {
    return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
    }

    /*
    * Calculate the HMAC-sha256 of a key and some data (raw strings)
    */
    function rstr_hmac_sha256(key, data)
    {
    var bkey = rstr2binb(key);
    if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);

    var ipad = Array(16), opad = Array(16);
    for(var i = 0; i < 16; i++)
    {
    ipad[i] = bkey[i] ^ 0x36363636;
    opad[i] = bkey[i] ^ 0x5C5C5C5C;
    }

    var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
    return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
    }

    /*
    * Convert a raw string to a hex string
    */
    function rstr2hex(input)
    {
    try { hexcase } catch(e) { hexcase=0; }
    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
    var output = "";
    var x;
    for(var i = 0; i < input.length; i++)
    {
    x = input.charCodeAt(i);
    output += hex_tab.charAt((x >>> 4) & 0x0F)
    + hex_tab.charAt( x & 0x0F);
    }
    return output;
    }

    /*
    * Convert a raw string to a base-64 string
    */
    function rstr2b64(input)
    {
    try { b64pad } catch(e) { b64pad=''; }
    var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    var output = "";
    var len = input.length;
    for(var i = 0; i < len; i += 3)
    {
    var triplet = (input.charCodeAt(i) << 16)
    | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
    | (i + 2 < len ? input.charCodeAt(i+2) : 0);
    for(var j = 0; j < 4; j++)
    {
    if(i * 8 + j * 6 > input.length * 8) output += b64pad;
    else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
    }
    }
    return output;
    }

    /*
    * Convert a raw string to an arbitrary string encoding
    */
    function rstr2any(input, encoding)
    {
    var divisor = encoding.length;
    var remainders = Array();
    var i, q, x, quotient;

    /* Convert to an array of 16-bit big-endian values, forming the dividend */
    var dividend = Array(Math.ceil(input.length / 2));
    for(i = 0; i < dividend.length; i++)
    {
    dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
    }

    /*
    * Repeatedly perform a long division. The binary array forms the dividend,
    * the length of the encoding is the divisor. Once computed, the quotient
    * forms the dividend for the next step. We stop when the dividend is zero.
    * All remainders are stored for later use.
    */
    while(dividend.length > 0)
    {
    quotient = Array();
    x = 0;
    for(i = 0; i < dividend.length; i++)
    {
    x = (x << 16) + dividend[i];
    q = Math.floor(x / divisor);
    x -= q * divisor;
    if(quotient.length > 0 || q > 0)
    quotient[quotient.length] = q;
    }
    remainders[remainders.length] = x;
    dividend = quotient;
    }

    /* Convert the remainders to the output string */
    var output = "";
    for(i = remainders.length - 1; i >= 0; i--)
    output += encoding.charAt(remainders[i]);

    /* Append leading zero equivalents */
    var full_length = Math.ceil(input.length * 8 /
    (Math.log(encoding.length) / Math.log(2)))
    for(i = output.length; i < full_length; i++)
    output = encoding[0] + output;

    return output;
    }

    /*
    * Encode a string as utf-8.
    * For efficiency, this assumes the input is valid utf-16.
    */
    function str2rstr_utf8(input)
    {
    var output = "";
    var i = -1;
    var x, y;

    while(++i < input.length)
    {
    /* Decode utf-16 surrogate pairs */
    x = input.charCodeAt(i);
    y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
    if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
    {
    x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
    i++;
    }

    /* Encode output as utf-8 */
    if(x <= 0x7F)
    output += String.fromCharCode(x);
    else if(x <= 0x7FF)
    output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
    0x80 | ( x & 0x3F));
    else if(x <= 0xFFFF)
    output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
    0x80 | ((x >>> 6 ) & 0x3F),
    0x80 | ( x & 0x3F));
    else if(x <= 0x1FFFFF)
    output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
    0x80 | ((x >>> 12) & 0x3F),
    0x80 | ((x >>> 6 ) & 0x3F),
    0x80 | ( x & 0x3F));
    }
    return output;
    }

    /*
    * Encode a string as utf-16
    */
    function str2rstr_utf16le(input)
    {
    var output = "";
    for(var i = 0; i < input.length; i++)
    output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
    (input.charCodeAt(i) >>> 8) & 0xFF);
    return output;
    }

    function str2rstr_utf16be(input)
    {
    var output = "";
    for(var i = 0; i < input.length; i++)
    output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
    input.charCodeAt(i) & 0xFF);
    return output;
    }

    /*
    * Convert a raw string to an array of big-endian words
    * Characters >255 have their high-byte silently ignored.
    */
    function rstr2binb(input)
    {
    var output = Array(input.length >> 2);
    for(var i = 0; i < output.length; i++)
    output[i] = 0;
    for(var i = 0; i < input.length * 8; i += 8)
    output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
    return output;
    }

    /*
    * Convert an array of big-endian words to a string
    */
    function binb2rstr(input)
    {
    var output = "";
    for(var i = 0; i < input.length * 32; i += 8)
    output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
    return output;
    }

    /*
    * Main sha256 function, with its support functions
    */
    function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
    function sha256_R (X, n) {return ( X >>> n );}
    function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
    function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
    function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
    function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
    function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
    function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
    function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
    function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
    function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
    function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}

    var sha256_K = new Array
    (
    1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
    -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
    1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
    264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
    -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
    113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
    1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
    -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
    430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
    1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
    -1866530822, -1538233109, -1090935817, -965641998
    );

    function binb_sha256(m, l)
    {
    var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
    1359893119, -1694144372, 528734635, 1541459225);
    var W = new Array(64);
    var a, b, c, d, e, f, g, h;
    var i, j, T1, T2;

    /* append padding */
    m[l >> 5] |= 0x80 << (24 - l % 32);
    m[((l + 64 >> 9) << 4) + 15] = l;

    for(i = 0; i < m.length; i += 16)
    {
    a = HASH[0];
    b = HASH[1];
    c = HASH[2];
    d = HASH[3];
    e = HASH[4];
    f = HASH[5];
    g = HASH[6];
    h = HASH[7];

    for(j = 0; j < 64; j++)
    {
    if (j < 16) W[j] = m[j + i];
    else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
    sha256_Gamma0256(W[j - 15])), W[j - 16]);

    T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
    sha256_K[j]), W[j]);
    T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
    h = g;
    g = f;
    f = e;
    e = safe_add(d, T1);
    d = c;
    c = b;
    b = a;
    a = safe_add(T1, T2);
    }

    HASH[0] = safe_add(a, HASH[0]);
    HASH[1] = safe_add(b, HASH[1]);
    HASH[2] = safe_add(c, HASH[2]);
    HASH[3] = safe_add(d, HASH[3]);
    HASH[4] = safe_add(e, HASH[4]);
    HASH[5] = safe_add(f, HASH[5]);
    HASH[6] = safe_add(g, HASH[6]);
    HASH[7] = safe_add(h, HASH[7]);
    }
    return HASH;
    }

    function safe_add (x, y)
    {
    var lsw = (x & 0xFFFF) + (y & 0xFFFF);
    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
    return (msw << 16) | (lsw & 0xFFFF);
    }
  5. bryanchow created this gist Jan 20, 2012.
    1 change: 1 addition & 0 deletions gistfile1.txt
    Original file line number Diff line number Diff line change
    @@ -0,0 +1 @@
    //