Created
January 3, 2012 19:29
-
-
Save chrishamant/1556484 to your computer and use it in GitHub Desktop.
Revisions
-
chrishamant created this gist
Jan 3, 2012 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,137 @@ #!/usr/bin/env python """Split large file into multiple pieces for upload to S3. S3 only supports 5Gb files for uploading directly, so for larger CloudBioLinux box images we need to use boto's multipart file support. This parallelizes the task over available cores using multiprocessing. Usage: s3_multipart_upload.py <file_to_transfer> <bucket_name> [<s3_key_name>] if <s3_key_name> is not specified, the filename will be used. --norr -- Do not use reduced redundancy storage. --public -- Make uploaded files public. Files are stored at cheaper reduced redundancy storage by default. http://bcbio.wordpress.com/2011/04/10/parallel-upload-to-amazon-s3-with-python-boto-and-multiprocessing/ """ import os import sys import glob import subprocess import contextlib import functools import multiprocessing from multiprocessing.pool import IMapIterator from optparse import OptionParser import boto def main(transfer_file, bucket_name, s3_key_name=None, use_rr=True, make_public=True): if s3_key_name is None: s3_key_name = os.path.basename(transfer_file) conn = boto.connect_s3() bucket = conn.lookup(bucket_name) mb_size = os.path.getsize(transfer_file) / 1e6 if mb_size < 60: _standard_transfer(bucket, s3_key_name, transfer_file, use_rr) else: _multipart_upload(bucket, s3_key_name, transfer_file, mb_size, use_rr) s3_key = bucket.get_key(s3_key_name) if make_public: s3_key.set_acl("public-read") def upload_cb(complete, total): sys.stdout.write(".") sys.stdout.flush() def _standard_transfer(bucket, s3_key_name, transfer_file, use_rr): print " Upload with standard transfer, not multipart", new_s3_item = bucket.new_key(s3_key_name) new_s3_item.set_contents_from_filename(transfer_file, reduced_redundancy=use_rr, cb=upload_cb, num_cb=10) print def map_wrap(f): @functools.wraps(f) def wrapper(*args, **kwargs): return apply(f, *args, **kwargs) return wrapper def mp_from_ids(mp_id, mp_keyname, mp_bucketname): """Get the multipart upload from the bucket and multipart IDs. This allows us to reconstitute a connection to the upload from within multiprocessing functions. """ conn = boto.connect_s3() bucket = conn.lookup(mp_bucketname) mp = boto.s3.multipart.MultiPartUpload(bucket) mp.key_name = mp_keyname mp.id = mp_id return mp @map_wrap def transfer_part(mp_id, mp_keyname, mp_bucketname, i, part): """Transfer a part of a multipart upload. Designed to be run in parallel. """ mp = mp_from_ids(mp_id, mp_keyname, mp_bucketname) print " Transferring", i, part with open(part) as t_handle: mp.upload_part_from_file(t_handle, i+1) os.remove(part) def _multipart_upload(bucket, s3_key_name, tarball, mb_size, use_rr=True): """Upload large files using Amazon's multipart upload functionality. """ cores = multiprocessing.cpu_count() def split_file(in_file, mb_size, split_num=5): prefix = os.path.join(os.path.dirname(in_file), "%sS3PART" % (os.path.basename(s3_key_name))) split_size = int(min(mb_size / (split_num * 2.0), 250)) if not os.path.exists("%saa" % prefix): cl = ["split", "-b%sm" % split_size, in_file, prefix] subprocess.check_call(cl) return sorted(glob.glob("%s*" % prefix)) mp = bucket.initiate_multipart_upload(s3_key_name, reduced_redundancy=use_rr) with multimap(cores) as pmap: for _ in pmap(transfer_part, ((mp.id, mp.key_name, mp.bucket_name, i, part) for (i, part) in enumerate(split_file(tarball, mb_size, cores)))): pass mp.complete_upload() @contextlib.contextmanager def multimap(cores=None): """Provide multiprocessing imap like function. The context manager handles setting up the pool, worked around interrupt issues and terminating the pool on completion. """ if cores is None: cores = max(multiprocessing.cpu_count() - 1, 1) def wrapper(func): def wrap(self, timeout=None): return func(self, timeout=timeout if timeout is not None else 1e100) return wrap IMapIterator.next = wrapper(IMapIterator.next) pool = multiprocessing.Pool(cores) yield pool.imap pool.terminate() if __name__ == "__main__": parser = OptionParser() parser.add_option("-r", "--norr", dest="use_rr", action="store_false", default=True) parser.add_option("-p", "--public", dest="make_public", action="store_true", default=False) (options, args) = parser.parse_args() if len(args) < 2: print __doc__ sys.exit() kwargs = dict(use_rr=options.use_rr, make_public=options.make_public) main(*args, **kwargs)