Created
January 4, 2025 23:48
-
-
Save csc449/ed2535b9646b3c6e466e88b2850dcfd1 to your computer and use it in GitHub Desktop.
nano.translate
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #%% imports | |
| from dataclasses import dataclass | |
| import math | |
| import numpy as np | |
| import os | |
| import requests | |
| import pandas as pd | |
| import unicodedata | |
| import re | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from torch.utils.data import Dataset, DataLoader | |
| #%% download data | |
| def download_file(url, filename): | |
| try: | |
| response = requests.get(url) | |
| response.raise_for_status() # Raise an exception for bad status codes | |
| with open(filename, 'wb') as f: | |
| f.write(response.content) | |
| print(f"File downloaded successfully to '{filename}'") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error downloading file: {e}") | |
| def unicode_to_ascii(s): | |
| return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn') | |
| def preprocess_sentence(w): | |
| """ | |
| string normalization, space handling, punctuation handling, unicode, add special tokens. | |
| """ | |
| w = unicode_to_ascii(w.lower().strip()) | |
| # creating a space between a word and the punctuation following it | |
| # eg: "he is a boy." => "he is a boy ." | |
| w = re.sub(r"([?.!,¿])", r" \1 ", w) # space before punctuation | |
| w = re.sub(r'[" "]+', " ", w) # multiple space -> one space | |
| w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w) # remove unrecognized char, replacing everything with space except (a-z, A-Z, ".", "?", "!", ",") | |
| w = w.rstrip().strip() | |
| # defer to later. | |
| # adding a start and an end token to the sentence, model know when to start and stop predicting. | |
| # w = '<bos> ' + w + ' <eos>' | |
| return w | |
| #endregion | |
| data_url = 'https://raw.githubusercontent.com/chaoyu-io/yshare/refs/heads/main/data/spa.txt' | |
| file_path = '/tmp/spa.txt' | |
| if not os.path.exists(file_path): | |
| download_file(data_url, file_path) | |
| #%% | |
| with open(file_path, encoding='UTF-8') as fid: | |
| lines = fid.read().strip().split('\n') | |
| # sample size (try with smaller sample size to reduce computation) | |
| PAD_IDX = 50256 # reuse EOS, to avoid embedding look up error | |
| BOS_IDX = 1 | |
| EOS_IDX = 2 | |
| BLK_SIZE = 1024 | |
| num_examples = 30000 | |
| # creates lists containing each pair | |
| original_word_pairs = [[w for w in l.split('\t')][:2] for l in lines[:num_examples]] # [:2], first two elements as a pair, as in original data format. | |
| data = pd.DataFrame(original_word_pairs, columns=["en", "es"]) | |
| # Converts the unicode file to ascii | |
| data["en"] = data.en.apply(lambda w: preprocess_sentence(w)) | |
| data["es"] = data.es.apply(lambda w: preprocess_sentence(w)) | |
| # %% build vocabulary | |
| class LanguageIndex(): | |
| def __init__(self, lang): | |
| self.lang = lang | |
| self.word2idx = {} | |
| self.idx2word = {} | |
| self.vocab = set() | |
| self.create_index() | |
| def create_index(self): | |
| for phrase in self.lang: | |
| self.vocab.update(phrase.split(' ')) | |
| self.vocab = sorted(self.vocab) | |
| # use -1 ad padding index, in | |
| self.word2idx['<pad>'] = PAD_IDX | |
| self.word2idx['<bos>'] = BOS_IDX | |
| self.word2idx['<eos>'] = EOS_IDX | |
| for index,word in enumerate(self.vocab): | |
| self.word2idx[word] = index + 3 # 3 special tokens. | |
| for word,index in self.word2idx.items(): | |
| self.idx2word[index] = word | |
| # Vocabulary, convert to index. | |
| src_vocab = LanguageIndex( data.en.values.tolist()) | |
| tgt_vocab = LanguageIndex( data.es.values.tolist()) | |
| src_tensor_0 = [ [ src_vocab.word2idx[w] for w in s.split(' ')] for s in data.en.values.tolist() ] | |
| tgt_tensor_0 = [ [ tgt_vocab.word2idx[w] for w in s.split(' ')] for s in data.es.values.tolist() ] | |
| import tiktoken | |
| tokenizer = tiktoken.get_encoding("gpt2") | |
| EOS_IDX = tokenizer.encode("<|endoftext|>", allowed_special={"<|endoftext|>"})[0] | |
| print('eos from tiktoken ', EOS_IDX) | |
| src_tensor = [tokenizer.encode(s) for s in data.en.values.tolist()] | |
| tgt_tensor = [tokenizer.encode(s) for s in data.es.values.tolist()] | |
| # max_src_len = max_tensor_len(src_tensor) | |
| # max_tgt_len = max_tensor_len(tgt_tensor) | |
| # src_padded = [ pad_tensor(t, max_src_len) for t in src_tensor ] | |
| # tgt_padded = [pad_tensor(t, max_tgt_len) for t in tgt_tensor] | |
| # for i,row in data.iterrows(): | |
| # 1) __getitem__ 2) __len__ | |
| class TranslationData(Dataset): | |
| def __init__(self, src, tgt): | |
| self.src = src | |
| self.tgt = tgt | |
| # self.src_valid_len = [ np.sum( x!=0 ) for x in src] | |
| def __getitem__(self, index): | |
| x = self.src[index] | |
| y = self.tgt[index] | |
| x_len = len(x) | |
| y_len = len(y) | |
| sentence = [EOS_IDX] + x + [EOS_IDX] + y + [EOS_IDX] | |
| target = sentence[1:] + [PAD_IDX] # extra pad | |
| for i in range(x_len+2): | |
| target[i] = PAD_IDX # mask out (x_len+2), the first prediction align wit y | |
| return sentence, target, x_len, y_len | |
| def __len__(self): | |
| return len(self.src) | |
| # create all data and split | |
| from torch.utils.data import random_split | |
| all_data = TranslationData(src_tensor, tgt_tensor) | |
| assert len(all_data) == num_examples, 'data size match' | |
| num_train_sample = int(0.8 * num_examples) | |
| num_test_sample = num_examples - num_train_sample | |
| train_dataset, test_dataset = random_split(all_data, [num_train_sample, num_test_sample]) | |
| def pad_array(t, max_len): | |
| # min(max_len): batch data, and model context window BLK_SIZE | |
| padded = np.full(( min(max_len, BLK_SIZE)), PAD_IDX, dtype=np.int64) # np.full with init. | |
| l = min(len(t), max_len) # max_len should always > 5, sanity check. | |
| padded[:l] = t | |
| return padded | |
| def make_batch(data_batch): | |
| max_l = max( len(src) for src,_,_,_ in data_batch ) | |
| all_src_pad = [] | |
| all_tgt_pad = [] | |
| for (src, tgt, x_len, y_len) in data_batch: | |
| # first target tensor is BOS | |
| src_pad = pad_array(src, max_l) | |
| tgt_pad = pad_array(tgt, max_l) | |
| all_src_pad.append(torch.tensor(src_pad)) | |
| all_tgt_pad.append(torch.tensor(tgt_pad)) | |
| src_tensor = torch.stack(all_src_pad) | |
| tgt_tensor = torch.stack(all_tgt_pad) | |
| return (src_tensor, tgt_tensor) | |
| train_dataloader = DataLoader(train_dataset, batch_size=64, collate_fn=make_batch, shuffle=True) | |
| test_dataloader = DataLoader(test_dataset, batch_size=64, collate_fn=make_batch, shuffle=True) | |
| # %% build transformer | |
| class LayerNorm(nn.Module): | |
| def __init__(self, ndim, bias): | |
| super().__init__() | |
| # not linear layer, simply nn.Param, initialization built-in | |
| self.weight = nn.Parameter(torch.ones(ndim)) # init. as 1 | |
| self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | |
| def forward(self, input): | |
| # https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html#torch.nn.LayerNorm | |
| # layer_norm applied on last D dimensiosn, D is shape of [self.weight.shape] | |
| # weight, and bias are additionally applied as multiplication, addition after normalization., epsilon is for normalization. | |
| return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| # key, query, value projections for all heads, but in a batch | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) #(in_features, out_features) | |
| # output projection | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
| # regularization | |
| self.attn_dropout = nn.Dropout(config.dropout) | |
| self.resid_dropout = nn.Dropout(config.dropout) | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.dropout = config.dropout | |
| # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 | |
| self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') | |
| if not self.flash: | |
| print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | |
| # causal mask to ensure that attention is only applied to the left in the input sequence | |
| # register_buffer: not learneable, save model-specific state information. | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) # block_size: context length. | |
| .view(1, 1, config.block_size, config.block_size)) # view: reshape. | |
| def forward(self, x): | |
| B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
| # nn.Linear applies to last dimension of inputs: [B,T,C] nn.Linear(C, 3C), output [B,T,3C], after the split, we got three tensors of [B,T,C] | |
| # calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
| q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # split into 3 sub-matrixese, c_attn [n_embd, 3xn_mebed] | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # C got divided. | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
| if self.flash: | |
| # efficient attention using Flash Attention CUDA kernels | |
| y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) | |
| else: | |
| # manual implementation of attention | |
| # @: matmul, q.matmul(k), | |
| # matmul applies to last two dimension, [B, nh, T, hs] @ [B, nh, hs, T], --> [B, nh, T, T] | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # size(-1) is hs | |
| # softmax fill with '-inf', masked_fill, if bias==0, set as -inf | |
| att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) # up to :T, T not guaranted to be config.block_size | |
| att = F.softmax(att, dim=-1) | |
| att = self.attn_dropout(att) # apply dropout in the end. | |
| y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
| # tranpose(1,2) -> [B, T, nh, hs], contiguous ensures continuous memory, following order of dimension, | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
| # output projection | |
| y = self.resid_dropout(self.c_proj(y)) | |
| return y | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # MLP 4-8 times of embedding dimension, larger than transformer hidden. | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
| self.gelu = nn.GELU() | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
| self.dropout = nn.Dropout(config.dropout) | |
| def forward(self, x): | |
| # fully connected, activation, fully connected, dropuot. | |
| x = self.c_fc(x) | |
| x = self.gelu(x) | |
| x = self.c_proj(x) | |
| x = self.dropout(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| # layer-norm, attention, | |
| # res-add | |
| x = x + self.attn(self.ln_1(x)) | |
| # layer-norm, mlp | |
| # res-add | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| @dataclass | |
| class GPTConfig: | |
| # 1024 / 50304 | |
| # 12 / 12 / 768 as GPT-2 | |
| block_size: int = BLK_SIZE # 1024 | |
| vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency | |
| n_layer: int = 12 # 12 | |
| n_head: int = 12 # 12 | |
| n_embd: int = 768 # 768 | |
| dropout: float = 0.0 | |
| bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.vocab_size is not None | |
| assert config.block_size is not None | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| # wte: saves the embedding table, each row corresponding to embedding for token. | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), # wte: word token embedding. wpe: word position embedding. | |
| wpe = nn.Embedding(config.block_size, config.n_embd), # wpe: trained position embedding. | |
| drop = nn.Dropout(config.dropout), | |
| h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f = LayerNorm(config.n_embd, bias=config.bias), | |
| )) | |
| # last layer. | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| # with weight tying when using torch.compile() some warnings get generated: | |
| # "UserWarning: functional_call was passed multiple values for tied weights. | |
| # This behavior is deprecated and will be an error in future versions" | |
| # not 100% sure what this is, so far seems to be harmless. TODO investigate | |
| # lm_head: re-use the embedding table, computes the inner-product of inputs with each embedding. | |
| # the embedding layer (vocab_size -> n_emb )vs the last projection layer (n_embed -> vocab ) | |
| self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying | |
| # apply recursively for every subm-module | |
| self.apply(self._init_weights) | |
| # adhoc: apply special scaled init to the residual projections, per GPT-2 paper | |
| for pn, p in self.named_parameters(): | |
| if pn.endswith('c_proj.weight'): | |
| torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) | |
| # report number of parameters | |
| print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) | |
| def get_num_params(self, non_embedding=True): | |
| """ | |
| Return the number of parameters in the model. | |
| For non-embedding count (default), the position embeddings get subtracted. | |
| The token embeddings would too, except due to the parameter sharing these | |
| params are actually used as weights in the final layer, so we include them. | |
| """ | |
| n_params = sum(p.numel() for p in self.parameters()) # numel() for total param. | |
| if non_embedding: | |
| n_params -= self.transformer.wpe.weight.numel() # remove wpe: shared param | |
| return n_params | |
| def _init_weights(self, module): | |
| # only linear layer and embedding? | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, idx, targets=None): | |
| # target is the same shape with idx. Each token has a target, and a loss | |
| device = idx.device # idx is a tensor. | |
| b, t = idx.size() # batch size, seq len, (seq of tokens) | |
| # seq length can be less than context window size. | |
| assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
| pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) | |
| # forward the GPT model itself | |
| # wte: embedding layer, lookup according to input size [b,t], output [b,t,n_embd] | |
| tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | |
| # wpe: look up [1,t] into [t, n_emd] | |
| pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd) | |
| # dropout at input | |
| x = self.transformer.drop(tok_emb + pos_emb) | |
| # shape [B, T, C] | |
| for block in self.transformer.h: | |
| x = block(x) | |
| # layernorm after the output. | |
| x = self.transformer.ln_f(x) | |
| if targets is not None: | |
| # if we are given some desired targets also calculate the loss | |
| # shape [B, T, V] vocab_size, T sequence size. | |
| logits = self.lm_head(x) | |
| # logits.shape [64, 256, 65] | |
| # targets.shape [64, 256], toy vocabulary of 65, target.max()=64 | |
| # targets.view(-1).shape: 16384, -1 means all element.s | |
| # logits.size(-1): 65 | |
| # logits.view(-1, 65): shape [16384, 65], the two -1 have different meaning, size(-1) get the last dim, view(-1) get all elements | |
| # cross_entropy([16384, 65] [16384], ignore_index (the padding index) | |
| # IGNORE_IDX for computing cross_entropy | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=PAD_IDX) | |
| else: | |
| # inference-time mini-optimization: only forward the lm_head on the very last position | |
| logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim | |
| loss = None | |
| return logits, loss | |
| def crop_block_size(self, block_size): | |
| # model surgery to decrease the block size if necessary | |
| # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) | |
| # but want to use a smaller block size for some smaller, simpler model | |
| assert block_size <= self.config.block_size | |
| self.config.block_size = block_size | |
| self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) | |
| for block in self.transformer.h: | |
| if hasattr(block.attn, 'bias'): # only attention bias (the casual mask) | |
| block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] | |
| def configure_optimizers(self, weight_decay, learning_rate, betas): | |
| # adam, learning rate, beta, weight_decay | |
| # start with all of the candidate parameters | |
| param_dict = {pn: p for pn, p in self.named_parameters()} | |
| # filter out those that do not require grad | |
| param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
| # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | |
| # i.e. all weight tensors in matmuls + embeddings decay, | |
| decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
| # all biases and layernorms don't. | |
| nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
| optim_groups = [ | |
| {'params': decay_params, 'weight_decay': weight_decay}, | |
| {'params': nodecay_params, 'weight_decay': 0.0} | |
| ] | |
| num_decay_params = sum(p.numel() for p in decay_params) | |
| num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
| print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | |
| print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | |
| optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas) | |
| return optimizer | |
| @torch.no_grad() | |
| def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | |
| """ | |
| Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete | |
| the sequence max_new_tokens times, feeding the predictions back into the model each time. | |
| Most likely you'll want to make sure to be in model.eval() mode of operation for this. | |
| idx: shape (b,t), contains the prompt. | |
| first iteration: computes all k-v cache | |
| follow iterations: re-use k-v cache, auto-regressive generating. | |
| """ | |
| for _ in range(max_new_tokens): | |
| # if the sequence context is growing too long we must crop it at block_size | |
| idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # idx[:, -blocksize:], keep the last blocksize columsn | |
| # forward the model to get the logits for the index in the sequence | |
| logits, _ = self(idx_cond) | |
| # pluck the logits at the final step and scale by desired temperature | |
| # logit shape [B, T, V], use the last one in sequence. | |
| # divided by temperate > 1, reduces diversity , divied by temperatre < 1, thorugh linear scale in raw domain, nonline in exp domain. | |
| logits = logits[:, -1, :] / temperature | |
| # optionally crop the logits to only the top k options | |
| if top_k is not None: | |
| # import ipdb;ipdb.set_trace() | |
| # v,_ the same shape with logits, v: values, _, index | |
| v, _ = torch.topk(logits, min(top_k, logits.size(-1))) # topk, return topk alone one dimension, [N, N], become [N,k] | |
| # logits [1,65], v[:, [-1]] scalar, | |
| # logits < v[:, [-1]] | |
| # logits [b, t], v: [b, k], v[:, [-1]], [b,1] represented kth largest, | |
| # logits < v[:, [-1]] broadcast [b, 1] into [b, t], then perform element-wise comparision . | |
| logits[logits < v[:, [-1]]] = -float('Inf') # mask out values below topk. | |
| # apply softmax to convert logits to (normalized) probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # opt 1: greedy decoding, choose the most probable. | |
| # opt 2: top-K followed by multinomial sampling, no beam search, | |
| idx_next = torch.multinomial(probs, num_samples=1) | |
| # append sampled index to the running sequence and continue | |
| idx = torch.cat((idx, idx_next), dim=1) | |
| return idx | |
| # %% Load pre-trained GTP | |
| from transformers import GPT2LMHeadModel | |
| # n_layer, n_head and n_embd are determined from model_type | |
| model_type = 'gpt2' # hardcoded | |
| config_args = { | |
| 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params | |
| }[model_type] | |
| print("forcing vocab_size=50257, block_size=1024, bias=True") | |
| config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints | |
| config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints | |
| config_args['bias'] = True # always True for GPT model checkpoints | |
| # create a from-scratch initialized minGPT model | |
| config = GPTConfig(**config_args) | |
| model = GPT(config) | |
| sd = model.state_dict() | |
| sd_keys = sd.keys() | |
| sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param | |
| # init a huggingface/transformers model | |
| model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
| sd_hf = model_hf.state_dict() | |
| # copy while ensuring all of the parameters are aligned and match in names and shapes | |
| sd_keys_hf = sd_hf.keys() | |
| sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer | |
| sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) | |
| transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
| # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear | |
| # this means that we have to transpose these weights when we import them | |
| assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | |
| for k in sd_keys_hf: | |
| if any(k.endswith(w) for w in transposed): | |
| # special treatment for the Conv1D weights we need to transpose | |
| assert sd_hf[k].shape[::-1] == sd[k].shape #shape[::-1] reversed. | |
| with torch.no_grad(): | |
| sd[k].copy_(sd_hf[k].t()) # copy_: shallow coyh, share memory | |
| else: | |
| # vanilla copy over the other parameters | |
| assert sd_hf[k].shape == sd[k].shape | |
| with torch.no_grad(): | |
| sd[k].copy_(sd_hf[k]) | |
| #%% validate GPT decoder | |
| device=torch.device("cuda") if torch.cuda.is_available() else torch.device('cpu') | |
| model.to(device) | |
| x,y = next(iter(train_dataloader)) | |
| x,y = x.to(device), y.to(device) | |
| logits, loss = model.forward(x, y) | |
| print(x.shape) | |
| print(y.shape) | |
| print(logits.shape) | |
| print(loss) | |
| # %% fine-tune GPT on translation task. | |
| learning_rate = 6e-4 # max learning rate | |
| max_epochs = 10 | |
| weight_decay = 0.1 | |
| beta1 = 0.9 | |
| beta2 = 0.95 # beta1, beta2, hyperparameter in adam. | |
| num_train_batches = len(train_dataloader) | |
| optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2)) | |
| from tqdm import tqdm | |
| for epoch in range(max_epochs): | |
| # with context manager for tqdm. | |
| # with tqdm(total=num_train_batches, desc="Processing") as pbar: | |
| model.train() | |
| epoch_l = 0 | |
| pbar = tqdm(total=num_train_batches, desc="training") # start pbar | |
| for src,tgt in train_dataloader: | |
| src = src.to(device) | |
| tgt = tgt.to(device) | |
| optimizer.zero_grad() # start zero_grad | |
| logits,batch_loss = model.forward(src,tgt) | |
| epoch_l += batch_loss.item() | |
| batch_loss.backward() | |
| # if gradient_clip_val > 0: # To be discussed later | |
| # clip_gradients(gradient_clip_val, model) | |
| optimizer.step() | |
| pbar.update(1) | |
| pbar.set_postfix({"loss": batch_loss}) # Update average loss | |
| pbar.close() # manually close |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment