Last active
April 9, 2024 06:27
-
-
Save dantonnoriega/092d04deba671f65b7a99a244c957c9d to your computer and use it in GitHub Desktop.
Revisions
-
dantonnoriega revised this gist
Apr 9, 2024 . No changes.There are no files selected for viewing
-
dantonnoriega created this gist
Jan 19, 2024 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,52 @@ import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm # Set random seed for reproducibility np.random.seed(42) # Generate synthetic data n_obs = 100 time = np.arange(n_obs) treatment = np.concatenate((np.zeros(n_obs // 2), np.ones(n_obs // 2))) time_treatment = time * treatment control_trend = 1 + 0.1 * time + np.random.normal(0, .2, n_obs) treatment_trend = 3 + .13 * time + .13 * np.maximum(0, time - sum(treatment)) * treatment + np.random.normal(0, .2, n_obs) intervention_time = n_obs // 2 # Intervention at the middle # Create a DataFrame data = pd.DataFrame({ 'time': time, 'time_treatment': time_treatment, 'treatment': treatment, 'control_trend': control_trend, 'treatment_trend': treatment_trend }) # Define the outcome variable data['outcome'] = data['control_trend'] + data['treatment_trend'] data.loc[data['time'] >= intervention_time, 'outcome'] += 2 # Effect of intervention # Run difference-in-differences regression ## y = t + d + t:d model = sm.OLS(data['outcome'], sm.add_constant(data[['time', 'treatment', 'time_treatment']])) results = model.fit() # Print regression results print(results.summary()) # Create a plot plt.figure(figsize=(10, 6)) plt.plot(data['time'], data['control_trend'], label='Control Trend') plt.plot(data['time'], data['treatment_trend'], label='Treatment Trend') plt.axvline(x=intervention_time, color='gray', linestyle='--', label='Intervention Time') plt.annotate('Intervention', xy=(intervention_time, 3.5), xytext=(intervention_time + 5, 4.5), arrowprops=dict(arrowstyle='->'), fontsize=12) plt.xlabel('Time') plt.ylabel('Trends') plt.title('Near-Parallel Trends Before Intervention') plt.legend() plt.grid(True) plt.show()