Last active
January 12, 2024 20:11
-
-
Save dctanner/03e00842cc68a23262d21c4b92ee775d to your computer and use it in GitHub Desktop.
Revisions
-
dctanner revised this gist
Jan 12, 2024 . No changes.There are no files selected for viewing
-
dctanner created this gist
Jan 10, 2024 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,58 @@ import sys import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, pipeline device = "cuda:0" system_prompt = "You are Sablo, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge. You assist users with any question, task, or other request they may have." model_path = sys.argv[1] model_name = model_path.split("/")[-1] tokenizer = AutoTokenizer.from_pretrained(model_path) #, local_files_only=True) model = AutoModelForCausalLM.from_pretrained( model_path, #local_files_only=True, # load_in_8bit=True, torch_dtype=torch.bfloat16, # use_flash_attention_2=True, ).to(device) with open('teknium-OpenHermes-7B_September_25_2023.json', 'r') as f: data = json.load(f) input_messages = data['conversations'] outputs = [] for input_message in input_messages: messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": input_message['instruction']} ] # pipe = pipeline(task="conversational", model=model, tokenizer=tokenizer, device_map=device) # print(pipe(messages)) encodeds = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") model_inputs = encodeds.to(device) start_position = model_inputs.shape[1] generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.eos_token_id) answer = tokenizer.decode( generated_ids[:, start_position:][0], skip_special_tokens=True, clean_up_tokenization_spaces=True) # Remove <|im_end|> from answer answer = answer[:answer.find("<|im_end|>")] print("User:", input_message['instruction']) print("Assistant:", answer) print("-------------------------------") messages.append({"role": "assistant", "content": answer}) outputs.append(messages) output_data = { "model_name": model_name, "conversations": outputs } with open(model_name+'.json', 'w') as f: json.dump(output_data, f)