-
-
Save dipspb/764995abe277d1321bdd7f0c0072a2d2 to your computer and use it in GitHub Desktop.
Revisions
-
fchollet revised this gist
Sep 22, 2017 . 1 changed file with 2 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -7,10 +7,11 @@ batch_size = 128 output_dim = 64 # Test data. x_np = np.random.random((samples, timesteps, input_dim)) y_np = np.random.random((samples, output_dim)) print('Classic stacked LSTM: 35s/epoch on CPU') inputs = keras.Input((timesteps, input_dim)) x = keras.layers.LSTM(output_dim, return_sequences=True)(inputs) x = keras.layers.LSTM(output_dim, return_sequences=True)(x) -
fchollet created this gist
Sep 21, 2017 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,35 @@ import keras import numpy as np timesteps = 60 input_dim = 64 samples = 10000 batch_size = 128 output_dim = 64 print('Classic stacked LSTM: 35s/epoch on CPU') x_np = np.random.random((samples, timesteps, input_dim)) y_np = np.random.random((samples, output_dim)) inputs = keras.Input((timesteps, input_dim)) x = keras.layers.LSTM(output_dim, return_sequences=True)(inputs) x = keras.layers.LSTM(output_dim, return_sequences=True)(x) x = keras.layers.LSTM(output_dim)(x) classic_model = keras.models.Model(inputs, x) classic_model.compile(optimizer='rmsprop', loss='mse') classic_model.fit(x_np, y_np, batch_size=batch_size, epochs=4) print('New stacked LSTM: 30s/epoch on CPU (15pct faster)') cells = [ keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), ] inputs = keras.Input((timesteps, input_dim)) x = keras.layers.RNN(cells)(inputs) new_model = keras.models.Model(inputs, x) new_model.compile(optimizer='rmsprop', loss='mse') new_model.fit(x_np, y_np, batch_size=batch_size, epochs=4)