- 
      
- 
        Save dneuraln/8a73b9c4898270c2943b527b83a6b57a to your computer and use it in GitHub Desktop. 
    GPU Torch Benchmark 
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | -- Max Jaderberg 4/9/13 | |
| -- GPU Effectiveness test | |
| require 'torch' | |
| require 'sys' | |
| require 'nn' | |
| require 'xlua' | |
| cmd = torch.CmdLine() | |
| cmd:text() | |
| cmd:text('GPU Benchmark. Max Jaderberg.') | |
| cmd:text() | |
| cmd:text('Options:') | |
| cmd:option('-size', 24, 'size of images') | |
| cmd:option('-N', 1000, 'number of images') | |
| cmd:option('-threads', 2, 'number of threads') | |
| cmd:text() | |
| opt = cmd:parse(arg or {}) | |
| torch.setnumthreads(opt.threads) | |
| torch.setdefaulttensortype("torch.FloatTensor") | |
| -- Input size | |
| sz = opt.size | |
| finalsize = (sz - 4)/2 --for a 5x5 filter | |
| Ntest = opt.N | |
| -- Test input | |
| x = torch.rand(Ntest, 3, sz, sz) | |
| -- Simple network | |
| model = nn.Sequential() | |
| model:add(nn.SpatialConvolution(3, 64, 5, 5)) | |
| model:add(nn.Tanh()) | |
| model:add(nn.SpatialLPPooling(64, 2, 2, 2, 2, 2)) | |
| model:add(nn.Reshape(64*finalsize*finalsize)) | |
| model:add(nn.Linear(64*finalsize*finalsize, 128)) | |
| model:add(nn.Tanh()) | |
| model:add(nn.Linear(128, 2)) | |
| model:add(nn.Tanh()) | |
| criterion = nn.MSECriterion() | |
| -- Test ouput | |
| y = torch.rand(Ntest, 2) | |
| -- Test routine | |
| local runtest = function() | |
| print('==> Type is '..x:type()) | |
| for i = 1,x:size(1) do | |
| xlua.progress(i, x:size(1)) | |
| local yp = model:forward(x[i]) | |
| local err = criterion:forward(yp, y[i]) | |
| local df_do = criterion:backward(yp, y[i]) | |
| model:backward(x[i], df_do) | |
| end | |
| end | |
| -- CPU TEST | |
| cputime0 = sys.clock() | |
| runtest() | |
| cputime1 = sys.clock() | |
| cputime = cputime1 - cputime0 | |
| print('CPU Time: '.. (cputime*1000) .. 'ms') | |
| -- GPU TEST | |
| require 'cunn' | |
| x = x:cuda() | |
| y = y:cuda() | |
| model:cuda() | |
| criterion:cuda() | |
| gputime0 = sys.clock() | |
| runtest() | |
| gputime1 = sys.clock() | |
| gputime = gputime1 - gputime0 | |
| print('GPU Time: '.. (gputime*1000) .. 'ms') | |
| print('------------------') | |
| print('GPU speedup: '..cputime/gputime..'x') | |
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment