Skip to content

Instantly share code, notes, and snippets.

View escherba's full-sized avatar

Eugene Scherba escherba

View GitHub Profile
@escherba
escherba / cities.json
Created May 15, 2019 21:34 — forked from joshgeller/cities.json
1000 Largest US Cities By Population With Geographic Coordinates and Timezone, in JSON
[
{
"city": "New York",
"growth_from_2000_to_2013": "4.80%",
"latitude": 40.7127837,
"longitude": -74.0059413,
"population": 8405837,
"rank": 1,
"state": "New York",
"timezone": "America/New_York"
@escherba
escherba / install.sh
Created December 24, 2016 21:14 — forked from wdullaer/install.sh
Install Latest Docker and Docker-compose on Ubuntu
# Ask for the user password
# Script only works if sudo caches the password for a few minutes
sudo true
# Install kernel extra's to enable docker aufs support
# sudo apt-get -y install linux-image-extra-$(uname -r)
# Add Docker PPA and install latest version
# sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21E9
# sudo sh -c "echo deb https://get.docker.io/ubuntu docker main > /etc/apt/sources.list.d/docker.list"
@escherba
escherba / letor_metrics.py
Created June 1, 2016 19:13 — forked from mblondel/letor_metrics.py
Learning to rank metrics.
# (C) Mathieu Blondel, November 2013
# License: BSD 3 clause
import numpy as np
def ranking_precision_score(y_true, y_score, k=10):
"""Precision at rank k
Parameters
@escherba
escherba / rank_metrics.py
Created May 31, 2016 22:34 — forked from bwhite/rank_metrics.py
Ranking Metrics
"""Information Retrieval metrics
Useful Resources:
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt
http://www.nii.ac.jp/TechReports/05-014E.pdf
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf
Learning to Rank for Information Retrieval (Tie-Yan Liu)
"""
import numpy as np
@escherba
escherba / hellinger.py
Last active March 31, 2016 21:29 — forked from larsmans/hellinger.py
Hellinger distance for discrete probability distributions in Python
"""
Three ways of computing the Hellinger distance between two discrete
probability distributions using NumPy and SciPy.
"""
import numpy as np
from scipy.linalg import norm
from scipy.spatial.distance import euclidean