Skip to content

Instantly share code, notes, and snippets.

@eteq
Last active January 29, 2020 04:42
Show Gist options
  • Select an option

  • Save eteq/4599814 to your computer and use it in GitHub Desktop.

Select an option

Save eteq/4599814 to your computer and use it in GitHub Desktop.

Revisions

  1. eteq revised this gist Jan 31, 2013. 1 changed file with 1 addition and 1 deletion.
    2 changes: 1 addition & 1 deletion pyspherematch.py
    Original file line number Diff line number Diff line change
    @@ -136,7 +136,7 @@ def _great_circle_distance(ra1, dec1, ra2, dec2):
    dlamb = lambf - lambs

    numera = cos(phif) * sin(dlamb)
    numerb = cos(phis) * sin(phif) - sin(phis) * sin(phif) * cos(dlamb)
    numerb = cos(phis) * sin(phif) - sin(phis) * cos(phif) * cos(dlamb)
    numer = hypot(numera, numerb)
    denom = sin(phis) * sin(phif) + cos(phis) * cos(phif) * cos(dlamb)
    return degrees(arctan2(numer, denom))
  2. eteq created this gist Jan 22, 2013.
    142 changes: 142 additions & 0 deletions pyspherematch.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,142 @@
    """
    Match two sets of on-sky coordinates to each other.
    I.e., find nearest neighbor of one that's in the other.
    Similar in purpose to IDL's spherematch, but totally different implementation.
    Requires numpy and scipy.
    """
    from __future__ import division
    import numpy as np
    try:
    from scipy.spatial import cKDTree as KDT
    except ImportError:
    from scipy.spatial import KDTree as KDT





    def spherematch(ra1, dec1, ra2, dec2, tol=None, nnearest=1):
    """
    Finds matches in one catalog to another.
    Parameters
    ra1 : array-like
    Right Ascension in degrees of the first catalog
    dec1 : array-like
    Declination in degrees of the first catalog (shape of array must match `ra1`)
    ra2 : array-like
    Right Ascension in degrees of the second catalog
    dec2 : array-like
    Declination in degrees of the second catalog (shape of array must match `ra2`)
    tol : float or None, optional
    How close (in degrees) a match has to be to count as a match. If None,
    all nearest neighbors for the first catalog will be returned.
    nnearest : int, optional
    The nth neighbor to find. E.g., 1 for the nearest nearby, 2 for the
    second nearest neighbor, etc. Particularly useful if you want to get
    the nearest *non-self* neighbor of a catalog. To do this, use:
    ``spherematch(ra, dec, ra, dec, nnearest=2)``
    Returns
    -------
    idx1 : int array
    Indecies into the first catalog of the matches. Will never be
    larger than `ra1`/`dec1`.
    idx2 : int array
    Indecies into the second catalog of the matches. Will never be
    larger than `ra1`/`dec1`.
    ds : float array
    Distance (in degrees) between the matches
    """

    ra1 = np.array(ra1, copy=False)
    dec1 = np.array(dec1, copy=False)
    ra2 = np.array(ra2, copy=False)
    dec2 = np.array(dec2, copy=False)

    if ra1.shape != dec1.shape:
    raise ValueError('ra1 and dec1 do not match!')
    if ra2.shape != dec2.shape:
    raise ValueError('ra2 and dec2 do not match!')

    x1, y1, z1 = _spherical_to_cartesian(ra1.ravel(), dec1.ravel())

    # this is equivalent to, but faster than just doing np.array([x1, y1, z1])
    coords1 = np.empty((x1.size, 3))
    coords1[:, 0] = x1
    coords1[:, 1] = y1
    coords1[:, 2] = z1

    x2, y2, z2 = _spherical_to_cartesian(ra2.ravel(), dec2.ravel())

    # this is equivalent to, but faster than just doing np.array([x1, y1, z1])
    coords2 = np.empty((x2.size, 3))
    coords2[:, 0] = x2
    coords2[:, 1] = y2
    coords2[:, 2] = z2

    kdt = KDT(coords2)
    if nnearest == 1:
    idxs2 = kdt.query(coords1)[1]
    elif nnearest > 1:
    idxs2 = kdt.query(coords1, nnearest)[1][:, -1]
    else:
    raise ValueError('invalid nnearest ' + str(nnearest))

    ds = _great_circle_distance(ra1, dec1, ra2[idxs2], dec2[idxs2])

    idxs1 = np.arange(ra1.size)

    if tol is not None:
    msk = ds < tol
    idxs1 = idxs1[msk]
    idxs2 = idxs2[msk]
    ds = ds[msk]

    return idxs1, idxs2, ds


    def _spherical_to_cartesian(ra, dec):
    """
    (Private internal function)
    Inputs in degrees. Outputs x,y,z
    """
    rar = np.radians(ra)
    decr = np.radians(dec)

    x = np.cos(rar) * np.cos(decr)
    y = np.sin(rar) * np.cos(decr)
    z = np.sin(decr)

    return x, y, z


    def _great_circle_distance(ra1, dec1, ra2, dec2):
    """
    (Private internal function)
    Returns great circle distance. Inputs in degrees.
    Uses vicenty distance formula - a bit slower than others, but
    numerically stable.
    """
    from numpy import radians, degrees, sin, cos, arctan2, hypot

    # terminology from the Vicenty formula - lambda and phi and
    # "standpoint" and "forepoint"
    lambs = radians(ra1)
    phis = radians(dec1)
    lambf = radians(ra2)
    phif = radians(dec2)

    dlamb = lambf - lambs

    numera = cos(phif) * sin(dlamb)
    numerb = cos(phis) * sin(phif) - sin(phis) * sin(phif) * cos(dlamb)
    numer = hypot(numera, numerb)
    denom = sin(phis) * sin(phif) + cos(phis) * cos(phif) * cos(dlamb)
    return degrees(arctan2(numer, denom))