Created
July 28, 2019 16:47
-
-
Save gamble27/fd988d28b913e3f245c79bb18ccc6f79 to your computer and use it in GitHub Desktop.
Flattened 2 digit MNIST NN output
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /home/olga/Projects/ML_MIT/venv/bin/python /home/olga/pycharm-2018.3.5/helpers/pydev/pydevd.py --multiproc --qt-support=auto --client 127.0.0.1 --port 35909 --file /home/olga/Projects/ML_MIT/project2_mnist/part2_twodigit/mlp.py | |
| pydev debugger: process 2921 is connecting | |
| Connected to pydev debugger (build 183.6156.13) | |
| ------------- | |
| Epoch 1: | |
| 100%|██████████| 562/562 [00:49<00:00, 11.27it/s] | |
| Train | loss1: 0.776068 accuracy1: 0.792538 | loss2: 0.798555 accuracy2: 0.777441 | |
| 100%|██████████| 62/62 [00:00<00:00, 666.11it/s] | |
| Valid | loss1: 0.430175 accuracy1: 0.878780 | loss2: 0.457375 accuracy2: 0.860887 | |
| 0%| | 0/562 [00:00<?, ?it/s]------------- | |
| Epoch 2: | |
| 100%|██████████| 562/562 [00:02<00:00, 233.25it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.396823 accuracy1: 0.886927 | loss2: 0.426801 accuracy2: 0.870357 | |
| 100%|██████████| 62/62 [00:00<00:00, 860.15it/s] | |
| Valid | loss1: 0.382405 accuracy1: 0.889113 | loss2: 0.403938 accuracy2: 0.875504 | |
| ------------- | |
| Epoch 3: | |
| 100%|██████████| 562/562 [00:02<00:00, 225.87it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.360463 accuracy1: 0.896769 | loss2: 0.390284 accuracy2: 0.883285 | |
| 100%|██████████| 62/62 [00:00<00:00, 729.80it/s] | |
| Valid | loss1: 0.367611 accuracy1: 0.894405 | loss2: 0.386381 accuracy2: 0.880544 | |
| 0%| | 0/562 [00:00<?, ?it/s]------------- | |
| Epoch 4: | |
| 97%|█████████▋| 547/562 [00:02<00:00, 218.22it/s]Train | loss1: 0.342956 accuracy1: 0.901246 | loss2: 0.372160 accuracy2: 0.889290 | |
| 100%|██████████| 562/562 [00:02<00:00, 218.78it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.360734 accuracy1: 0.895161 | loss2: 0.376846 accuracy2: 0.886341 | |
| 100%|██████████| 62/62 [00:00<00:00, 825.23it/s] | |
| ------------- | |
| Epoch 5: | |
| 100%|██████████| 562/562 [00:02<00:00, 221.92it/s] | |
| Train | loss1: 0.331562 accuracy1: 0.904443 | loss2: 0.360041 accuracy2: 0.893127 | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.356971 accuracy1: 0.896421 | loss2: 0.370512 accuracy2: 0.887853 | |
| 100%|██████████| 62/62 [00:00<00:00, 807.68it/s] | |
| ------------- | |
| Epoch 6: | |
| 98%|█████████▊| 553/562 [00:02<00:00, 232.64it/s]Train | loss1: 0.323069 accuracy1: 0.906973 | loss2: 0.350922 accuracy2: 0.895880 | |
| 100%|██████████| 562/562 [00:02<00:00, 227.98it/s] | |
| 100%|██████████| 62/62 [00:00<00:00, 829.59it/s] | |
| Valid | loss1: 0.354749 accuracy1: 0.899950 | loss2: 0.365907 accuracy2: 0.890625 | |
| ------------- | |
| Epoch 7: | |
| 97%|█████████▋| 543/562 [00:02<00:00, 232.17it/s]Train | loss1: 0.316259 accuracy1: 0.909169 | loss2: 0.343622 accuracy2: 0.898354 | |
| 100%|██████████| 562/562 [00:02<00:00, 222.53it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.353413 accuracy1: 0.900202 | loss2: 0.362405 accuracy2: 0.893397 | |
| 100%|██████████| 62/62 [00:00<00:00, 798.77it/s] | |
| ------------- | |
| Epoch 8: | |
| 100%|██████████| 562/562 [00:02<00:00, 226.29it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.310557 accuracy1: 0.910698 | loss2: 0.337544 accuracy2: 0.900328 | |
| Valid | loss1: 0.352648 accuracy1: 0.899698 | loss2: 0.359679 accuracy2: 0.894153 | |
| 100%|██████████| 62/62 [00:00<00:00, 792.77it/s] | |
| ------------- | |
| Epoch 9: | |
| 100%|██████████| 562/562 [00:02<00:00, 226.48it/s] | |
| Train | loss1: 0.305646 accuracy1: 0.912172 | loss2: 0.332348 accuracy2: 0.901968 | |
| 100%|██████████| 62/62 [00:00<00:00, 701.14it/s] | |
| Valid | loss1: 0.352283 accuracy1: 0.898942 | loss2: 0.357529 accuracy2: 0.894909 | |
| ------------- | |
| Epoch 10: | |
| 100%|██████████| 562/562 [00:02<00:00, 213.11it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.301333 accuracy1: 0.913201 | loss2: 0.327817 accuracy2: 0.903025 | |
| 100%|██████████| 62/62 [00:00<00:00, 860.38it/s] | |
| Valid | loss1: 0.352215 accuracy1: 0.898438 | loss2: 0.355823 accuracy2: 0.895665 | |
| ------------- | |
| Epoch 11: | |
| 97%|█████████▋| 546/562 [00:02<00:00, 222.32it/s]Train | loss1: 0.297492 accuracy1: 0.914202 | loss2: 0.323807 accuracy2: 0.904220 | |
| 100%|██████████| 562/562 [00:02<00:00, 224.67it/s] | |
| 100%|██████████| 62/62 [00:00<00:00, 737.55it/s] | |
| Valid | loss1: 0.352375 accuracy1: 0.899194 | loss2: 0.354468 accuracy2: 0.897429 | |
| 0%| | 0/562 [00:00<?, ?it/s]------------- | |
| Epoch 12: | |
| 99%|█████████▉| 558/562 [00:02<00:00, 229.69it/s]Train | loss1: 0.294033 accuracy1: 0.915036 | loss2: 0.320212 accuracy2: 0.904665 | |
| 100%|██████████| 562/562 [00:02<00:00, 229.34it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.352714 accuracy1: 0.898438 | loss2: 0.353398 accuracy2: 0.896925 | |
| 100%|██████████| 62/62 [00:00<00:00, 826.28it/s] | |
| ------------- | |
| Epoch 13: | |
| 100%|█████████▉| 560/562 [00:02<00:00, 234.91it/s]Train | loss1: 0.290891 accuracy1: 0.916342 | loss2: 0.316959 accuracy2: 0.905333 | |
| 100%|██████████| 562/562 [00:02<00:00, 231.68it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.353195 accuracy1: 0.898185 | loss2: 0.352561 accuracy2: 0.898185 | |
| 100%|██████████| 62/62 [00:00<00:00, 808.02it/s] | |
| ------------- | |
| Epoch 14: | |
| 100%|██████████| 562/562 [00:02<00:00, 236.14it/s] | |
| Train | loss1: 0.288017 accuracy1: 0.916787 | loss2: 0.313989 accuracy2: 0.906611 | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.353787 accuracy1: 0.898942 | loss2: 0.351919 accuracy2: 0.898185 | |
| 100%|██████████| 62/62 [00:00<00:00, 834.89it/s] | |
| ------------- | |
| Epoch 15: | |
| 99%|█████████▉| 556/562 [00:02<00:00, 232.56it/s]Train | loss1: 0.285370 accuracy1: 0.917427 | loss2: 0.311259 accuracy2: 0.907724 | |
| 100%|██████████| 562/562 [00:02<00:00, 218.65it/s] | |
| 100%|██████████| 62/62 [00:00<00:00, 836.58it/s] | |
| Valid | loss1: 0.354469 accuracy1: 0.898942 | loss2: 0.351440 accuracy2: 0.898185 | |
| ------------- | |
| Epoch 16: | |
| 100%|██████████| 562/562 [00:02<00:00, 228.32it/s] | |
| Train | loss1: 0.282918 accuracy1: 0.918038 | loss2: 0.308734 accuracy2: 0.908697 | |
| 100%|██████████| 62/62 [00:00<00:00, 791.85it/s] | |
| Valid | loss1: 0.355223 accuracy1: 0.897933 | loss2: 0.351099 accuracy2: 0.897933 | |
| ------------- | |
| Epoch 17: | |
| 100%|██████████| 562/562 [00:02<00:00, 227.09it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.280636 accuracy1: 0.918789 | loss2: 0.306384 accuracy2: 0.909419 | |
| 100%|██████████| 62/62 [00:00<00:00, 807.76it/s] | |
| Valid | loss1: 0.356033 accuracy1: 0.899194 | loss2: 0.350877 accuracy2: 0.898438 | |
| ------------- | |
| Epoch 18: | |
| 100%|██████████| 562/562 [00:02<00:00, 228.76it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.278502 accuracy1: 0.919623 | loss2: 0.304189 accuracy2: 0.910365 | |
| 100%|██████████| 62/62 [00:00<00:00, 821.62it/s] | |
| Valid | loss1: 0.356888 accuracy1: 0.897933 | loss2: 0.350755 accuracy2: 0.899194 | |
| ------------- | |
| Epoch 19: | |
| 97%|█████████▋| 547/562 [00:02<00:00, 234.20it/s]Train | loss1: 0.276497 accuracy1: 0.920485 | loss2: 0.302129 accuracy2: 0.911032 | |
| 100%|██████████| 562/562 [00:02<00:00, 225.42it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.357780 accuracy1: 0.896925 | loss2: 0.350721 accuracy2: 0.899446 | |
| 100%|██████████| 62/62 [00:00<00:00, 785.82it/s] | |
| ------------- | |
| Epoch 20: | |
| 98%|█████████▊| 553/562 [00:02<00:00, 229.68it/s]Train | loss1: 0.274608 accuracy1: 0.920930 | loss2: 0.300188 accuracy2: 0.911727 | |
| 100%|██████████| 562/562 [00:02<00:00, 229.49it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.358699 accuracy1: 0.897429 | loss2: 0.350763 accuracy2: 0.899194 | |
| 100%|██████████| 62/62 [00:00<00:00, 664.15it/s] | |
| ------------- | |
| Epoch 21: | |
| 96%|█████████▌| 540/562 [00:02<00:00, 220.97it/s]Train | loss1: 0.272821 accuracy1: 0.921319 | loss2: 0.298353 accuracy2: 0.912200 | |
| 100%|██████████| 562/562 [00:02<00:00, 219.93it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.359640 accuracy1: 0.896169 | loss2: 0.350871 accuracy2: 0.898942 | |
| 100%|██████████| 62/62 [00:00<00:00, 824.02it/s] | |
| ------------- | |
| Epoch 22: | |
| 100%|██████████| 562/562 [00:02<00:00, 236.54it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.271126 accuracy1: 0.921625 | loss2: 0.296614 accuracy2: 0.912978 | |
| 68%|██████▊ | 42/62 [00:00<00:00, 416.70it/s]Valid | loss1: 0.360598 accuracy1: 0.895917 | loss2: 0.351037 accuracy2: 0.899446 | |
| 100%|██████████| 62/62 [00:00<00:00, 499.19it/s] | |
| ------------- | |
| Epoch 23: | |
| 100%|██████████| 562/562 [00:02<00:00, 218.98it/s] | |
| Train | loss1: 0.269513 accuracy1: 0.922070 | loss2: 0.294962 accuracy2: 0.913089 | |
| 100%|██████████| 62/62 [00:00<00:00, 784.82it/s] | |
| Valid | loss1: 0.361567 accuracy1: 0.895413 | loss2: 0.351254 accuracy2: 0.899194 | |
| ------------- | |
| Epoch 24: | |
| 100%|██████████| 562/562 [00:02<00:00, 221.77it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.267976 accuracy1: 0.922375 | loss2: 0.293387 accuracy2: 0.913562 | |
| Valid | loss1: 0.362544 accuracy1: 0.894909 | loss2: 0.351516 accuracy2: 0.899194 | |
| 100%|██████████| 62/62 [00:00<00:00, 790.13it/s] | |
| ------------- | |
| Epoch 25: | |
| 100%|██████████| 562/562 [00:02<00:00, 218.84it/s] | |
| Train | loss1: 0.266507 accuracy1: 0.922848 | loss2: 0.291884 accuracy2: 0.914229 | |
| 100%|██████████| 62/62 [00:00<00:00, 774.37it/s] | |
| Valid | loss1: 0.363526 accuracy1: 0.894909 | loss2: 0.351818 accuracy2: 0.898690 | |
| ------------- | |
| Epoch 26: | |
| 100%|██████████| 562/562 [00:11<00:00, 49.87it/s] | |
| Train | loss1: 0.265100 accuracy1: 0.923376 | loss2: 0.290447 accuracy2: 0.914591 | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.364511 accuracy1: 0.894153 | loss2: 0.352155 accuracy2: 0.899194 | |
| 100%|██████████| 62/62 [00:00<00:00, 775.08it/s] | |
| ------------- | |
| Epoch 27: | |
| 100%|██████████| 562/562 [00:02<00:00, 229.36it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.263751 accuracy1: 0.923682 | loss2: 0.289070 accuracy2: 0.915008 | |
| 100%|██████████| 62/62 [00:00<00:00, 869.19it/s] | |
| Valid | loss1: 0.365495 accuracy1: 0.893649 | loss2: 0.352524 accuracy2: 0.899194 | |
| 0%| | 0/562 [00:00<?, ?it/s]------------- | |
| Epoch 28: | |
| 98%|█████████▊| 553/562 [00:02<00:00, 224.57it/s]Train | loss1: 0.262455 accuracy1: 0.924266 | loss2: 0.287748 accuracy2: 0.915453 | |
| 100%|██████████| 562/562 [00:02<00:00, 217.13it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Valid | loss1: 0.366477 accuracy1: 0.892893 | loss2: 0.352921 accuracy2: 0.899446 | |
| 100%|██████████| 62/62 [00:00<00:00, 799.10it/s] | |
| ------------- | |
| Epoch 29: | |
| 100%|██████████| 562/562 [00:02<00:00, 212.10it/s] | |
| 0%| | 0/62 [00:00<?, ?it/s]Train | loss1: 0.261209 accuracy1: 0.924600 | loss2: 0.286478 accuracy2: 0.915897 | |
| Valid | loss1: 0.367456 accuracy1: 0.892893 | loss2: 0.353343 accuracy2: 0.898438 | |
| 100%|██████████| 62/62 [00:00<00:00, 829.41it/s] | |
| ------------- | |
| Epoch 30: | |
| 100%|██████████| 562/562 [00:02<00:00, 227.22it/s] | |
| Train | loss1: 0.260008 accuracy1: 0.924766 | loss2: 0.285256 accuracy2: 0.916315 | |
| 100%|██████████| 62/62 [00:00<00:00, 804.85it/s] | |
| Valid | loss1: 0.368430 accuracy1: 0.892389 | loss2: 0.353787 accuracy2: 0.898185 | |
| 0%| | 0/62 [00:00<?, ?it/s]Test loss1: 0.400817 accuracy1: 0.892389 loss2: 0.374367 accuracy2: 0.893901 | |
| 100%|██████████| 62/62 [00:00<00:00, 844.45it/s] | |
| Process finished with exit code 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment