Skip to content

Instantly share code, notes, and snippets.

View gisbi-kim's full-sized avatar
๐Ÿ’ญ
I may be slow to respond.

Giseop Kim gisbi-kim

๐Ÿ’ญ
I may be slow to respond.
View GitHub Profile
@Pusnow
Pusnow / CS ๋ถ„์•ผ ์šฐ์ˆ˜ ํ•™์ˆ ๋Œ€ํšŒ ๋ชฉ๋ก.csv
Last active November 21, 2025 06:40
CS ๋ถ„์•ผ ์šฐ์ˆ˜ ํ•™์ˆ ๋Œ€ํšŒ ๋ชฉ๋ก
์•ฝ์ž ํ•œ๊ตญ์ •๋ณด๊ณผํ•™ํšŒ (2024) BK21ํ”Œ๋Ÿฌ์Šค IF (2018) KAIST CS (2022) SNU CSE (2024.4) POSTECH CSE (2024.9) ํ‰๊ท  (์ •๊ทœํ™”) ํ•™ํšŒ๋ช… DBLP Key
AAAI ์ตœ์šฐ์ˆ˜ 4 O O ์ตœ์šฐ์ˆ˜ 1.00 AAAI Conference on Artificial Intelligence (AAAI) conf/aaai
AAMAS ์šฐ์ˆ˜ 2 0.20 International Conference on Autonomous Agents and Multiagent Systems (AAMAS) conf/ifaamas
ACCV ์šฐ์ˆ˜ 1 ์šฐ์ˆ˜ 0.25 Asian Conference on Computer Vision (ACCV) conf/accv
ACL ์ตœ์šฐ์ˆ˜ 4 O O ์ตœ์šฐ์ˆ˜ 1.00 Annual Meeting of the Association for Computational Linguistics (ACL) conf/acl
ACL Findings ์šฐ์ˆ˜ ์šฐ์ˆ˜ 0.20 Findings of ACL series/findacl
ACNS ์šฐ์ˆ˜ 0.10 International Conference on Applied Cryptography and Network Security (ACNS) conf/acns
ACSAC ์šฐ์ˆ˜ 2 ์šฐ์ˆ˜ 0.30 Annual Computer Security Applications Conference (ACSAC) conf/acsac
AIED ์šฐ์ˆ˜ 0.10 International Conference on Artificial Intelligence in Education (AIED) conf/aied
AISTATS ์šฐ์ˆ˜ 1 ์šฐ์ˆ˜ 0.25 International Conference on Artificial Intelligence and Statistics (AISTATS) conf/aistats
@karpathy
karpathy / stablediffusionwalk.py
Last active November 5, 2025 20:13
hacky stablediffusion code for generating videos
"""
stable diffusion dreaming
creates hypnotic moving videos by smoothly walking randomly through the sample space
example way to run this script:
$ python stablediffusionwalk.py --prompt "blueberry spaghetti" --name blueberry
to stitch together the images, e.g.:
$ ffmpeg -r 10 -f image2 -s 512x512 -i blueberry/frame%06d.jpg -vcodec libx264 -crf 10 -pix_fmt yuv420p blueberry.mp4
@gisbi-kim
gisbi-kim / understanding_how_constrastive_loss_works.m
Last active April 24, 2021 04:11
Understanding how a constrastive loss works
%% Understanding how a constrastive loss works
% constrastive loss refs:
% - Kihyuk Sohn. Improved deep metric learning with multi- class n-pair loss objective. In Advances in Neural Informa- tion Processing Systems (NeurIPS), 2016.
% - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre- sentation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.
% - Zaiwei Zhang et al. Self-Supervised Pretraining of 3D Features on any Point-Cloud, 2021
%% param
num_negs = 100;
@subhadarship
subhadarship / collate_fn_example.py
Created February 27, 2020 04:19
collate_fn for PyTorch DataLoader
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
class MyDataset(Dataset):
def __init__(self):
x = np.random.rand(1000, 3) # 1000 3-dim samples
self.x = [x[i].tolist() for i in range(1000)]
y = np.random.randint(low=0, high=2, size=(1000,))
@luncliff
luncliff / cmake-tutorial.md
Last active November 24, 2025 06:30
CMake ํ• ๋•Œ ์ชผ์˜ค์˜ค๊ธˆ ๋„์›€์ด ๋˜๋Š” ๋ฌธ์„œ

CMake๋ฅผ ์™œ ์“ฐ๋Š”๊ฑฐ์ฃ ?
์ข‹์€ ํˆด์€ Visual Studio ๋ฟ์ž…๋‹ˆ๋‹ค. ๊ทธ ์ด์™ธ์—๋Š” ์ „๋ถ€ ์‚ฌ๋„(้‚ช้“)์ž…๋‹ˆ๋‹ค ์‚ฌ๋„! - ์ž‘์„ฑ์ž

์ฃผ์˜

  • ์ด ๋ฌธ์„œ๋Š” CMake๋ฅผ ์ฃผ๊ด€์ ์œผ๋กœ ์„œ์ˆ ํ•ฉ๋‹ˆ๋‹ค
  • ์ด ๋ฌธ์„œ๋ฅผ ํ†ตํ•ด CMake๋ฅผ ์‹œ์ž‘ํ•˜๊ธฐ์—” ์ ํ•ฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค
    https://cgold.readthedocs.io/en/latest/ 3.1 ์ฑ•ํ„ฐ๊นŒ์ง€ ๋”ฐ๋ผํ•ด๋ณธ ์ดํ›„ ๊ธฐ๋ณธ์‚ฌํ•ญ๋“ค์„ ์†์„ฑ์œผ๋กœ ์ตํžˆ๋Š” ๊ฒƒ์„ ๋•๊ธฐ์œ„ํ•œ ๋ณด์กฐ์ž๋ฃŒ๋กœ์จ ์ž‘์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค
@bogdan-kulynych
bogdan-kulynych / install-cuda-10-bionic.sh
Last active September 24, 2025 13:20
Install CUDA 10 on Ubuntu 18.04
# WARNING: These steps seem to not work anymore!
#!/bin/bash
# Purge existign CUDA first
sudo apt --purge remove "cublas*" "cuda*"
sudo apt --purge remove "nvidia*"
# Install CUDA Toolkit 10
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
@mbinna
mbinna / effective_modern_cmake.md
Last active November 19, 2025 15:20
Effective Modern CMake

Effective Modern CMake

Getting Started

For a brief user-level introduction to CMake, watch C++ Weekly, Episode 78, Intro to CMake by Jason Turner. LLVMโ€™s CMake Primer provides a good high-level introduction to the CMake syntax. Go read it now.

After that, watch Mathieu Ropertโ€™s CppCon 2017 talk Using Modern CMake Patterns to Enforce a Good Modular Design (slides). It provides a thorough explanation of what modern CMake is and why it is so much better than โ€œold schoolโ€ CMake. The modular design ideas in this talk are based on the book [Large-Scale C++ Software Design](https://www.amazon.de/Large-Scale-Soft

@superjax
superjax / EKF_SLAM.py
Created November 6, 2017 04:01
EKF_SLAM implementation from Probabilistic Robotics by Sebastian Thrun et al. (look for the plot helper gist for covariance plotting)
import numpy as np
import scipy.linalg
import scipy.stats
import matplotlib.pyplot as plt
import scipy.io
import scipy.sparse
from plot_helper import plot_cov_ellipse
from tqdm import tqdm
def R(theta):
@superjax
superjax / occupancy_grid_mapping_example.py
Last active November 18, 2024 01:29
An occupancy grid mapping example
# This is an implementation of Occupancy Grid Mapping as Presented
# in Chapter 9 of "Probabilistic Robotics" By Sebastian Thrun et al.
# In particular, this is an implementation of Table 9.1 and 9.2
import scipy.io
import scipy.stats
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
@justincbagley
justincbagley / How_to_Convert_Markdown_to_PDF.md
Last active October 7, 2025 10:57
How To Convert Markdown to PDF

How to convert markdown to PDF:

This post reviews several methods for converting a Markdown (.md) formatted file to PDF, from UNIX or Linux machines.

Using Pandoc:

$ pandoc How_I_got_svg-resizer_working_on_Mac_OSX.md -s -o test1.pdf