Last active
September 13, 2019 10:56
-
-
Save gka/1d716deada5f05e595c77df39f7320b4 to your computer and use it in GitHub Desktop.
Revisions
-
gka revised this gist
Mar 1, 2019 . No changes.There are no files selected for viewing
-
gka revised this gist
Mar 1, 2019 . No changes.There are no files selected for viewing
-
gka revised this gist
Mar 1, 2019 . No changes.There are no files selected for viewing
-
gka revised this gist
Mar 1, 2019 . 1 changed file with 3 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,3 +1,5 @@ https://blog.datawrapper.de/weekly39/ forked from <a href='http://bl.ocks.org/1wheel/'>1wheel</a>'s block: <a href='http://bl.ocks.org/1wheel/89ec11ab72a542b2a009d4fcd7b78b4c'>summer-heat</a> (wanted to see how Loess regression looks like, instead of linear regression) -
gka revised this gist
Mar 1, 2019 . 3 changed files with 240 additions and 14 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,6 +1,9 @@ console.clear() d3.select('body').selectAppend('div.tooltip.tooltip-hidden') var loess = LoessJS()() .bandwidth(0.43424) .robustnessIterations(1); var months = [] years.forEach(year => { @@ -12,9 +15,17 @@ byMonth = d3.nestBy(months, d => d.month) byMonth.forEach(month => { month.forEach((d, i) => { d.rolling = d3.mean(month.slice(i - 10, i + 1), d => d.tmp) }) const sorted = month.sort((a,b) => a.year - b.year); var xvals = sorted.map(d => d.year); var yvals = sorted.map(d => d.tmp); loess(xvals, yvals).forEach((tmpLoess, i) => { sorted[i].tmpLoess = tmpLoess; }); var monthReg = month.map(d => [d.year, d.tmp]) month.l = ss.linearRegressionLine(ss.linearRegression(monthReg)) @@ -65,31 +76,26 @@ var yearScale = d3.scaleLinear() var line = d3.line() .x(d => yearScale(d.year)) .y(d => c.y(d.tmpLoess)) .curve(d3.curveStep) .defined(d => !isNaN(d.rolling)) var monthSel = c.svg.appendMany('g', byMonth) .translate(d => c.x(d.key), 0) var y0 = years[0].year var y1 = 2017 monthSel.append('path') .at({ d: line, stroke: '#f0f', strokeWidth: 2, }).st({ fill: 'none', fillOpacity: 0 }) .attr('marker-end', 'url(#arrow)') @@ -149,7 +155,7 @@ c.svg.append('marker') .attr('markerHeight', 17) .attr('orient', 'auto') .append('path') .attr('d', 'M4,0 L0,-3 L 0,3Z') .at({ fill: '#f0f' }) This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -11,6 +11,7 @@ <div id='graph'></div> <script src='data.js'></script> <script src='loess.js'></script> <script src='d3_.js'></script> This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,219 @@ function LoessJS() { // Based on org.apache.commons.math.analysis.interpolation.LoessInterpolator // from http://commons.apache.org/math/ function loess() { var bandwidth = 0.3; var robustnessIters = 2; var accuracy = 1e-12; function smooth(xval, yval, weights) { var n = xval.length; var i; if (n !== yval.length) throw Error('Mismatched array lengths'); if (n === 0) throw Error('At least one point required.'); if (arguments.length < 3) { weights = []; i = -1; while (++i < n) weights[i] = 1; } science_stats_loessFiniteReal(xval); science_stats_loessFiniteReal(yval); science_stats_loessFiniteReal(weights); science_stats_loessStrictlyIncreasing(xval); if (n === 1) return [yval[0]]; if (n === 2) return [yval[0], yval[1]]; var bandwidthInPoints = Math.floor(bandwidth * n); if (bandwidthInPoints < 2) throw Error('Bandwidth too small.'); var res = []; var residuals = []; var robustnessWeights = []; // Do an initial fit and 'robustnessIters' robustness iterations. // This is equivalent to doing 'robustnessIters+1' robustness iterations // starting with all robustness weights set to 1. i = -1; while (++i < n) { res[i] = 0; residuals[i] = 0; robustnessWeights[i] = 1; } var iter = -1; while (++iter <= robustnessIters) { var bandwidthInterval = [0, bandwidthInPoints - 1]; // At each x, compute a local weighted linear regression var x; i = -1; while (++i < n) { x = xval[i]; // Find out the interval of source points on which // a regression is to be made. if (i > 0) { science_stats_loessUpdateBandwidthInterval( xval, weights, i, bandwidthInterval ); } var ileft = bandwidthInterval[0]; var iright = bandwidthInterval[1]; // Compute the point of the bandwidth interval that is // farthest from x var edge = xval[i] - xval[ileft] > xval[iright] - xval[i] ? ileft : iright; // Compute a least-squares linear fit weighted by // the product of robustness weights and the tricube // weight function. // See http://en.wikipedia.org/wiki/Linear_regression // (section "Univariate linear case") // and http://en.wikipedia.org/wiki/Weighted_least_squares // (section "Weighted least squares") var sumWeights = 0; var sumX = 0; var sumXSquared = 0; var sumY = 0; var sumXY = 0; var denom = Math.abs(1 / (xval[edge] - x)); for (var k = ileft; k <= iright; ++k) { var xk = xval[k]; var yk = yval[k]; var dist = k < i ? x - xk : xk - x; var w = science_stats_loessTricube(dist * denom) * robustnessWeights[k] * weights[k]; var xkw = xk * w; sumWeights += w; sumX += xkw; sumXSquared += xk * xkw; sumY += yk * w; sumXY += yk * xkw; } var meanX = sumX / sumWeights; var meanY = sumY / sumWeights; var meanXY = sumXY / sumWeights; var meanXSquared = sumXSquared / sumWeights; var beta = Math.sqrt(Math.abs(meanXSquared - meanX * meanX)) < accuracy ? 0 : (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX); var alpha = meanY - beta * meanX; res[i] = beta * x + alpha; residuals[i] = Math.abs(yval[i] - res[i]); } // No need to recompute the robustness weights at the last // iteration, they won't be needed anymore if (iter === robustnessIters) { break; } // Recompute the robustness weights. // Find the median residual. var sortedResiduals = residuals.slice(); sortedResiduals.sort(); var medianResidual = sortedResiduals[Math.floor(n / 2)]; if (Math.abs(medianResidual) < accuracy) break; let arg; i = -1; while (++i < n) { arg = residuals[i] / (6 * medianResidual); robustnessWeights[i] = arg >= 1 ? 0 : (w = 1 - arg * arg) * w; } } return res; } smooth.bandwidth = function(x) { if (!arguments.length) return x; bandwidth = x; return smooth; }; smooth.robustnessIterations = function(x) { if (!arguments.length) return x; robustnessIters = x; return smooth; }; smooth.accuracy = function(x) { if (!arguments.length) return x; accuracy = x; return smooth; }; return smooth; } function science_stats_loessFiniteReal(values) { var n = values.length; var i = -1; while (++i < n) if (!isFinite(values[i])) return false; return true; } function science_stats_loessStrictlyIncreasing(xval) { var n = xval.length; var i = 0; while (++i < n) if (xval[i - 1] >= xval[i]) return false; return true; } // Compute the tricube weight function. // http://en.wikipedia.org/wiki/Local_regression#Weight_function function science_stats_loessTricube(x) { return (x = 1 - x * x * x) * x * x; } // Given an index interval into xval that embraces a certain number of // points closest to xval[i-1], update the interval so that it embraces // the same number of points closest to xval[i], ignoring zero weights. function science_stats_loessUpdateBandwidthInterval(xval, weights, i, bandwidthInterval) { var left = bandwidthInterval[0]; var right = bandwidthInterval[1]; // The right edge should be adjusted if the next point to the right // is closer to xval[i] than the leftmost point of the current interval var nextRight = science_stats_loessNextNonzero(weights, right); if (nextRight < xval.length && xval[nextRight] - xval[i] < xval[i] - xval[left]) { var nextLeft = science_stats_loessNextNonzero(weights, left); bandwidthInterval[0] = nextLeft; bandwidthInterval[1] = nextRight; } } function science_stats_loessNextNonzero(weights, i) { var j = i + 1; while (j < weights.length && weights[j] === 0) j++; return j; } return loess; } -
gka created this gist
Mar 1, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1 @@ license: mit This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,3 @@ https://blog.datawrapper.de/weekly39/ forked from <a href='http://bl.ocks.org/1wheel/'>1wheel</a>'s block: <a href='http://bl.ocks.org/1wheel/89ec11ab72a542b2a009d4fcd7b78b4c'>summer-heat</a> This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,157 @@ // console.clear() d3.select('body').selectAppend('div.tooltip.tooltip-hidden') var months = [] years.forEach(year => { year.months .forEach((d, i) => months.push({year: year.year, tmp: d, month: i})) }) byMonth = d3.nestBy(months, d => d.month) byMonth.forEach(month => { month.forEach((d, i) => { d.rolling = d3.mean(month.slice(i - 10, i + 1), d => d.tmp) }) var monthReg = month.map(d => [d.year, d.tmp]) month.l = ss.linearRegressionLine(ss.linearRegression(monthReg)) month.min = d3.min(month, d => d.tmp) if (month.key == 1) month.min += 2 if (month.key == 0) month.min += .6 }) var sel = d3.select('#graph').html('') var c = d3.conventions({sel, margin: {left: 40}}) c.x.domain([0, 12]) c.y.domain(d3.extent(months, d => d.tmp)) c.svg.appendMany('rect', d3.range(12)) .at({ width: c.x(1), x: d => c.x(d), height: c.height, opacity: d => d % 2 ? .04 : .08 }) c.xAxis .tickFormat(i => 'Jan Feb March April May June July Aug Sept Oct Nov Dec'.split(' ')[i]) .tickValues(d3.range(12)) c.yAxis .ticks(6) .tickSize(c.width) .tickFormat(d => d + '° C') d3.drawAxis(c) c.svg.select('.x') .translate(0, 0) .selectAll('.tick') .translate(d => [c.x(d + .5), c.y(byMonth[d].min)]) c.svg.selectAll('.y') .translate(c.width, 0) var pad = innerWidth < 500 ? 3 : 10 var yearScale = d3.scaleLinear() .domain(d3.extent(years, d => d.year)) .range([pad, c.x(1) - pad]) var line = d3.line() .x(d => yearScale(d.year)) .y(d => c.y(d.rolling)) .curve(d3.curveStep) .defined(d => !isNaN(d.rolling)) var monthSel = c.svg.appendMany('g', byMonth) .translate(d => c.x(d.key), 0) monthSel .append('path') .at({ d: line, stroke: '#000', fill: 'none', strokeWidth: .0, }) var y0 = years[0].year var y1 = 2017 monthSel.append('path') .at({ d: d => `M ${yearScale(y0)} ${c.y(d.l(y0))} L ${yearScale(y1)} ${c.y(d.l(y1))}`, stroke: '#f0f', strokeWidth: 3, fill: '#f0f' }) .attr('marker-end', 'url(#arrow)') months.forEach(d => delete d.rolling) var circleSel = monthSel .appendMany('circle', d => d) .at({ r: .7, strokeWidth: 5, stroke: d => d.year == 1881 ? 'steelblue' : d.year == 2017 ? 'orange' : '#f00', strokeOpacity: d => d.year == 1881 || d.year == 2017 ? .5 : .01, stroke: '#f00', strokeOpacity: .01, opacity: innerWidth < 500 ? .7 : 1, cx: d => yearScale(d.year), cy: d => c.y(d.tmp) }) .call(d3.attachTooltip) .on('mouseover', d => { circleSel .classed('active', e => e.year == d.year) }) .on('mouseout', d => { circleSel.classed('active', 0) }) // .classed('active', d => d.year == 1881 || d.year == 2017) var octSel = monthSel.filter(d => d.key == 9) octSel.append('g') .translate(d => [pad - 27, c.y(d[0].tmp) + 2]) .append('text.anno').text(1881) .at({textAnchor: 'end', dy: '-.3em', fontSize: 10, dx: 10, opacity: .6}) .parent() .append('path') .at({ d: 'M 0,0 A 13.09 13.09 0 1 0 26,1', stroke: '#ccc', fill: 'none', }) octSel.append('g') .translate(d => [c.x(1) - pad, c.y(d[136].tmp) - 2]) .append('text.anno').text(2017) .at({textAnchor: 'start', dy: '1em', fontSize: 10, dx: 14, opacity: .6}) .parent() .append('path') .at({ d: 'M 0,0 A 13.09 13.09 0 1 1 26,1', stroke: '#ccc', fill: 'none', }) c.svg.append('marker') .attr('id', 'arrow') .attr('viewBox', '-10 -10 20 20') .attr('markerWidth', 17) .attr('markerHeight', 17) .attr('orient', 'auto') .append('path') .attr('d', 'M4,0 L0,-2 L 0,2Z') .at({ fill: '#f0f' }) This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1 @@ [{"months":[-5.4,-.1,2.6,5.6,11.8,15.1,18.6,15.9,12.1,5,5.7,.9],"avg_temp":7.31666666666667,"year":1881},{"months":[.4,1.5,6,7.7,12,14.3,16.8,14.9,13.1,8.9,3.9,.6],"avg_temp":8.34166666666667,"year":1882},{"months":[-.3,2.3,-1.7,6.1,12.4,16.2,16.7,15.9,13.4,8.5,4.3,.8],"avg_temp":7.88333333333333,"year":1883},{"months":[2.9,2.7,4.7,6.1,12.7,13.1,18.2,17,14.3,7.9,1.7,1.7],"avg_temp":8.58333333333333,"year":1884},{"months":[-2.8,3,2.5,9.2,10,16.7,17.3,14.6,12.7,7.4,2.7,-.3],"avg_temp":7.75,"year":1885},{"months":[-1.3,-2.9,.4,8.7,12.7,14.3,16.8,16.9,15.1,9.5,5.1,.8],"avg_temp":8.00833333333333,"year":1886},{"months":[-3.7,-.8,1.1,7.1,10,15.5,18.7,15.7,12.2,5.5,3.1,-.8],"avg_temp":6.96666666666667,"year":1887},{"months":[-1.9,-2.6,.7,5.7,12.1,15.8,14.7,15.1,12.5,6.4,3.3,.6],"avg_temp":6.86666666666667,"year":1888},{"months":[-2.4,-2.6,.3,6.9,15.8,18.6,16.4,15.4,11.1,8,2.7,-1.6],"avg_temp":7.38333333333333,"year":1889},{"months":[2,-2.6,4.1,6.8,13.6,13.9,15.4,16.5,13.1,7.2,2.9,-5.3],"avg_temp":7.3,"year":1890},{"months":[-4.5,-.6,2.6,5.1,12.7,14.7,16.2,15,13.8,9.9,2.7,1.7],"avg_temp":7.44166666666667,"year":1891},{"months":[-1.8,.5,.5,7,12.2,15.1,16,18.1,13.8,7.5,3,-1.9],"avg_temp":7.5,"year":1892},{"months":[-7.3,1.8,4.3,8.8,12.3,15.8,17.4,17,12.4,9.8,2.2,.3],"avg_temp":7.9,"year":1893},{"months":[-1.8,1.6,4.7,9.9,11.3,14.2,17.8,15.4,11,8,4.9,.5],"avg_temp":8.125,"year":1894},{"months":[-4,-6.8,1.4,8.6,12.2,15.7,17.2,16.5,15.2,7.1,4.8,-.1],"avg_temp":7.31666666666667,"year":1895},{"months":[-.8,-.2,5.3,5.9,10.7,16.7,17,14.3,12.8,8.6,1.2,-.5],"avg_temp":7.58333333333333,"year":1896},{"months":[-2.9,1.2,5,7.2,10.6,17,16.5,17.1,12.3,7.3,2.8,1.3],"avg_temp":7.95,"year":1897},{"months":[2.3,1.1,2.9,7.3,11.3,14.8,14.4,18,13.6,8.9,4.7,3],"avg_temp":8.525,"year":1898},{"months":[2.1,2,2.6,7.1,11.1,14.7,17.3,16.8,12.5,7.8,6.4,-3.3],"avg_temp":8.09166666666667,"year":1899},{"months":[.7,1.1,.6,6.5,10.8,16,18.4,16.2,13.8,8.6,4.7,2.8],"avg_temp":8.35,"year":1900},{"months":[-3.7,-4.1,2.1,8,12.8,15.6,18.5,16.4,13.4,9.1,2.7,.9],"avg_temp":7.64166666666667,"year":1901},{"months":[2.8,-1.3,3.4,7.8,8.6,15.3,15.8,14.7,12,7.1,1.6,-1.8],"avg_temp":7.16666666666667,"year":1902},{"months":[.3,3.6,5.7,4.7,12.6,14.8,16.2,15.4,13.5,9.6,4.4,-.8],"avg_temp":8.33333333333333,"year":1903},{"months":[-1.3,1.1,3,8.8,12.3,15.2,18.8,16.5,11.9,8.3,3.3,2.4],"avg_temp":8.35833333333333,"year":1904},{"months":[-1.8,1.3,4.5,5.9,12.1,17,18.6,16.5,12.8,4.5,3.1,1],"avg_temp":7.95833333333333,"year":1905},{"months":[1,.3,2.2,8,13.1,14.7,17.2,16.5,12.5,9.8,6.3,-2.2],"avg_temp":8.28333333333333,"year":1906},{"months":[-.3,-1.5,2.6,6.1,12.9,14.6,14.5,15.7,13.1,11.2,3.3,1.5],"avg_temp":7.80833333333333,"year":1907},{"months":[-2.2,1.2,2.3,5.4,13.2,17,17.2,14.5,12.1,8.1,1.5,-.5],"avg_temp":7.48333333333333,"year":1908},{"months":[-1.6,-2.5,1.5,7.8,10.9,14.1,15,16.2,12.7,10.2,2,1.9],"avg_temp":7.35,"year":1909},{"months":[1.4,2.4,3.7,7.3,12.3,16.5,15.5,15.8,12,9.1,2.2,2.6],"avg_temp":8.4,"year":1910},{"months":[-1.1,1.3,4,7.2,13.1,14.9,19.2,19.4,14.4,8.5,4.7,3],"avg_temp":9.05,"year":1911},{"months":[-1.5,2.3,6,6.9,11.9,15.6,17.9,14,9.1,6.5,2.6,3.1],"avg_temp":7.86666666666667,"year":1912},{"months":[-.2,1.3,6,7.8,12.4,14.8,14.6,14.8,12.6,9.5,6.8,2],"avg_temp":8.53333333333333,"year":1913},{"months":[-3,3.1,4.7,9.8,10.9,14.6,17.6,17.2,12.4,8.2,3.4,3.5],"avg_temp":8.53333333333333,"year":1914},{"months":[.2,1,1.7,6.9,13.1,17.5,16.2,15.2,11.8,6.4,1.5,3.5],"avg_temp":7.91666666666667,"year":1915},{"months":[3.8,.8,3.9,8.2,13.1,12.8,16,15.9,12,8.5,4.5,1.8],"avg_temp":8.44166666666667,"year":1916},{"months":[-2.6,-3.8,0,4.3,15,18.8,17.3,16.7,14.5,7.2,5.1,-2.1],"avg_temp":7.53333333333333,"year":1917},{"months":[.7,1.7,4,9,14,13,16.5,15.9,12.9,7.9,3,3.9],"avg_temp":8.54166666666667,"year":1918},{"months":[.7,-.5,3,5.6,11.6,15,14.4,16.1,14.7,6,.5,.8],"avg_temp":7.325,"year":1919},{"months":[2.3,3,6.1,9.4,13.8,14.9,17.4,15,13,6.9,1.2,.6],"avg_temp":8.63333333333333,"year":1920},{"months":[4.2,1.3,5.6,7.8,14,14.4,18.7,17.3,13.5,11,-.2,.5],"avg_temp":9.00833333333333,"year":1921},{"months":[-2.7,-1.3,3.5,5.5,13.6,15.7,15.7,15.4,11.2,5,2.5,2.2],"avg_temp":7.19166666666667,"year":1922},{"months":[1.5,1,4.9,6.8,11.4,11.2,18.6,15.7,13.1,10.3,2.9,-1.7],"avg_temp":7.975,"year":1923},{"months":[-2.9,-2.6,2.2,6.3,13.7,15.1,16.7,14.5,13.6,9.4,3,1.5],"avg_temp":7.54166666666667,"year":1924},{"months":[2.5,3.6,1.3,8.2,13.9,15,17.9,16.5,11,8.5,2,-.4],"avg_temp":8.33333333333333,"year":1925},{"months":[0,4.4,4,9.7,10.7,13.8,17.4,16,14.6,7.8,6,.6],"avg_temp":8.75,"year":1926},{"months":[1.8,.9,5.9,7.1,10.9,14.1,17.3,16.4,13.5,8.6,2.7,-2.6],"avg_temp":8.05,"year":1927},{"months":[1.6,2.5,2.9,7.5,10.1,14.1,18.4,16.2,12.5,8.6,6.2,-.3],"avg_temp":8.35833333333333,"year":1928},{"months":[-4.7,-9.6,2.6,4.5,13.1,14.5,17.5,17.1,15.5,9.7,4.7,3.6],"avg_temp":7.375,"year":1929},{"months":[2.3,-.2,4.2,8.3,11.6,18.2,16.4,16,13.2,8.7,5.9,.6],"avg_temp":8.76666666666667,"year":1930},{"months":[.2,-1.2,.2,5.8,15.1,16.1,16.8,15.4,10.2,7.3,4.7,.1],"avg_temp":7.55833333333333,"year":1931},{"months":[1.8,-1.9,.8,7,12.5,14.6,17.9,18.7,15,8.5,4.2,.8],"avg_temp":8.325,"year":1932},{"months":[-2.6,.1,5.1,7,11.5,14.3,18.1,16.9,13.5,8.8,2.5,-3.9],"avg_temp":7.60833333333333,"year":1933},{"months":[.5,1.2,4.1,10.3,13.3,16.4,18.3,16.4,15.6,9.6,4.1,4.8],"avg_temp":9.55,"year":1934},{"months":[-.8,1.9,2.7,7.3,10.5,17.2,17.8,16.6,13.7,8.6,5.2,.4],"avg_temp":8.425,"year":1935},{"months":[3.1,.2,5,6.2,12.3,16.2,16.8,16.2,13,6.4,3.8,1.5],"avg_temp":8.39166666666667,"year":1936},{"months":[-.8,2.2,2.9,8,14.7,16.3,17.2,17.1,13.3,9.5,3.3,-.5],"avg_temp":8.6,"year":1937},{"months":[1.7,.9,7,5,10.7,16,16.7,17.7,13.8,8.7,7,-1.9],"avg_temp":8.60833333333333,"year":1938},{"months":[2.6,1.6,1.7,8.6,10.5,16.3,17,17.5,13.4,6.5,5.5,-1.6],"avg_temp":8.3,"year":1939},{"months":[-9,-4.3,2.8,7.9,12.2,16.7,16.2,14.5,12.4,7.6,5.4,-2.8],"avg_temp":6.63333333333333,"year":1940},{"months":[-5.4,-.2,3.3,5.5,9.2,16.3,18.6,15,12.3,8,2,1.5],"avg_temp":7.175,"year":1941},{"months":[-7.9,-5.4,1.4,7.5,12.1,14.4,16.1,17.6,15.1,11.1,3.3,2.1],"avg_temp":7.28333333333333,"year":1942},{"months":[-.4,2.9,5.6,9.3,12.8,14.4,17.7,17.9,13.8,9.9,2.7,.2],"avg_temp":8.9,"year":1943},{"months":[3.1,-1.1,.9,8.6,11.6,14.2,17.4,19.6,12.8,8.6,4.1,-.4],"avg_temp":8.28333333333333,"year":1944},{"months":[-4,4,6,8.8,14,16.6,17.9,16.2,13.8,9.7,3.6,1.3],"avg_temp":8.99166666666667,"year":1945},{"months":[-1.8,2.4,3.7,10.2,13.9,14.8,18.4,16.2,14.1,7,4,-2.3],"avg_temp":8.38333333333333,"year":1946},{"months":[-4.7,-6.6,2.6,9.4,14.7,17.9,18.9,18.9,16.8,7.8,5.3,1.4],"avg_temp":8.53333333333333,"year":1947},{"months":[3.1,.5,5.7,10,13.6,15.6,16.2,16.4,13.8,8.7,4.2,.9],"avg_temp":9.05833333333333,"year":1948},{"months":[1.2,1.7,2,10.3,12.2,14.1,17.6,17,16.3,10.6,3.7,3],"avg_temp":9.14166666666667,"year":1949},{"months":[-1,3,4.8,6.8,13.8,17.6,18,17.5,12.9,7.8,4.3,-2],"avg_temp":8.625,"year":1950},{"months":[1.5,1.9,2.2,7.3,11.5,15.3,17.1,17.2,14.5,7.3,6.5,2.5],"avg_temp":8.73333333333333,"year":1951},{"months":[.2,-.1,2.6,10.3,12.3,15.2,18.3,17.8,10.5,7.2,1.7,-.5],"avg_temp":7.95833333333333,"year":1952},{"months":[-.8,-.1,4.8,9,13.2,16.1,17.4,16.4,13.5,10.4,4.8,2.5],"avg_temp":8.93333333333333,"year":1953},{"months":[-3.2,-3.5,4.3,5.8,12.2,16,14.4,15.8,13.5,9.9,4.1,3.2],"avg_temp":7.70833333333333,"year":1954},{"months":[-1.7,-1.9,.4,6.9,10.3,14.6,17.4,16.8,13.4,8,3.8,2.6],"avg_temp":7.55,"year":1955},{"months":[.2,-9.6,2.9,5.3,12.5,13.2,16.9,14.1,13.8,8.2,2.5,2],"avg_temp":6.83333333333333,"year":1956},{"months":[.3,3.8,6.4,7.5,9.7,16.7,17.7,15.1,11.8,9.2,4.5,.5],"avg_temp":8.6,"year":1957},{"months":[-.4,1.9,-.3,5.2,13.3,14.5,17,16.9,14.5,9.3,4.3,2.5],"avg_temp":8.225,"year":1958},{"months":[-.1,-.1,6.2,9.4,12.7,16.1,19.3,17.3,13.5,8.5,3.3,2.2],"avg_temp":9.025,"year":1959},{"months":[-.1,.4,4.3,7.4,12.8,16.2,15.4,15.8,12.5,9.1,6,1.2],"avg_temp":8.41666666666667,"year":1960},{"months":[-.8,4.4,6,10.6,10.3,16,15.1,15.7,16.3,10.5,3.7,-.6],"avg_temp":8.93333333333333,"year":1961},{"months":[1.7,.3,.2,8.2,9.8,14.2,15,15.8,12.3,9,2.7,-3.3],"avg_temp":7.15833333333333,"year":1962},{"months":[-7.4,-5.7,2.5,8.4,12,15.8,17.7,15.9,13.7,8.1,7.4,-3.1],"avg_temp":7.10833333333333,"year":1963},{"months":[-2.6,.6,.6,8.6,13.6,16.9,18.1,15.9,13.6,7.1,4.9,.4],"avg_temp":8.14166666666667,"year":1964},{"months":[1.2,-1.8,2.3,6.7,11.2,15.5,15,14.9,12.7,8.2,1.4,2.6],"avg_temp":7.49166666666667,"year":1965},{"months":[-2.7,3.5,3.3,8.6,13,16.9,15.6,15.5,13.2,11.1,2.2,2],"avg_temp":8.51666666666667,"year":1966},{"months":[.7,2.8,5.4,6.5,12.5,14.7,18.6,16.4,13.8,11.1,3.9,.4],"avg_temp":8.9,"year":1967},{"months":[-1.1,.7,4.4,9,10.9,16,16.2,16.4,13.4,10.2,3.7,-2],"avg_temp":8.15,"year":1968},{"months":[.5,-2.1,.9,7,12.9,14.8,18.4,16.5,13.8,10,5.1,-4.7],"avg_temp":7.75833333333333,"year":1969},{"months":[-2.6,-1.1,1.2,5.3,11.4,17.2,16.1,16.8,13.2,8.9,5.8,.5],"avg_temp":7.725,"year":1970},{"months":[-1.1,1.4,1,8.2,14,13.9,18,17.8,12,8.8,3.5,3.6],"avg_temp":8.425,"year":1971},{"months":[-2.3,2,5.3,7.2,11.3,14.5,17.7,15.7,10.7,6.8,4.3,.8],"avg_temp":7.83333333333333,"year":1972},{"months":[0,1,3.9,5.1,12.5,16.1,17.2,17.7,14.1,7.3,3.3,.2],"avg_temp":8.2,"year":1973},{"months":[3.3,3.2,5.7,8,11,14.1,15.3,17.1,13.2,5.5,4.9,4.8],"avg_temp":8.84166666666667,"year":1974},{"months":[4.5,1.4,3.6,6.8,11.8,14.7,18.2,18.8,15.5,7.5,3.1,1.2],"avg_temp":8.925,"year":1975},{"months":[1.2,.5,1.3,6.9,12.8,17.4,19.3,16.2,12.7,9.5,4.8,-1],"avg_temp":8.46666666666667,"year":1976},{"months":[.4,3,6.1,5.7,11.7,15.5,16.5,15.9,11.9,10.2,5.1,2.1],"avg_temp":8.675,"year":1977},{"months":[.8,-1.4,4.8,6.5,11.6,14.8,15.5,15.1,12.2,9.1,4.2,.3],"avg_temp":7.79166666666667,"year":1978},{"months":[-4.5,-1.8,3.7,6.3,12.4,16.5,15.3,15.5,13.1,8.6,3.7,3.8],"avg_temp":7.71666666666667,"year":1979},{"months":[-2.7,2.1,3.3,6,10.7,14.7,15.1,16.6,13.9,8,3,.7],"avg_temp":7.61666666666667,"year":1980},{"months":[-1.5,-.4,6.8,7.8,13.2,15.3,16.4,16.4,14,8.1,4.6,-2.2],"avg_temp":8.20833333333333,"year":1981},{"months":[-2.3,-.1,4.2,6.5,12.4,16.3,18.9,17.3,15.7,9.7,6,2.2],"avg_temp":8.9,"year":1982},{"months":[4,-1.7,4.6,8.6,11.3,16.3,20.4,18.1,13.7,9.2,3.5,.7],"avg_temp":9.05833333333333,"year":1983},{"months":[1.1,-.3,2,6.8,10.8,13.7,15.9,17,12.3,10.2,4.9,1.2],"avg_temp":7.96666666666667,"year":1984},{"months":[-5.5,-3.1,2.8,7.6,13.4,13.5,17.4,16.2,13.5,8.8,.8,3.7],"avg_temp":7.425,"year":1985},{"months":[.1,-6.4,3,6.3,14.1,15.9,17,16.3,11.3,9.6,5.9,2.1],"avg_temp":7.93333333333333,"year":1986},{"months":[-5.9,-.3,-.4,9.1,9.7,13.9,16.9,15.5,14.5,9.4,4.9,2.1],"avg_temp":7.45,"year":1987},{"months":[3.5,2.1,2.7,8,14.2,15,17,17,13.2,9.7,3,3.4],"avg_temp":9.06666666666667,"year":1988},{"months":[2.5,3.4,7,7.2,13.8,15.3,17.7,17,14.4,10.4,2.7,2.4],"avg_temp":9.48333333333333,"year":1989},{"months":[2.5,5.7,6.9,7.4,13.9,15.2,16.7,18.3,11.8,10.2,4.5,.8],"avg_temp":9.49166666666667,"year":1990},{"months":[1.5,-2.4,6.4,7.1,9.5,13.5,19.2,17.9,14.8,8.2,4,.7],"avg_temp":8.36666666666667,"year":1991},{"months":[1,2.8,4.8,7.8,14.5,17.3,18.6,19.1,13.4,6.5,5.4,1.3],"avg_temp":9.375,"year":1992},{"months":[2.5,-.7,3.6,10.4,14.6,15.7,16.1,15.8,12.2,7.9,.4,3.2],"avg_temp":8.475,"year":1993},{"months":[3,-.2,6.3,7.9,12.6,15.9,21.3,17.8,13.2,7.6,7.2,3.6],"avg_temp":9.68333333333333,"year":1994},{"months":[.2,4.6,3.1,8.5,12.2,14.3,20.1,18.3,12.6,11.8,3,-1.8],"avg_temp":8.90833333333333,"year":1995},{"months":[-2.8,-2.2,1,8.4,11.2,15.7,15.9,17.2,10.9,9.2,4.5,-2.4],"avg_temp":7.21666666666667,"year":1996},{"months":[-2.6,4.1,5.8,6.4,12.7,15.9,17.2,19.8,13.7,7.7,4,2.2],"avg_temp":8.90833333333333,"year":1997},{"months":[2.4,4.3,5,8.9,14,16.5,16.4,16.7,13.4,8.7,1.6,1],"avg_temp":9.075,"year":1998},{"months":[2.6,.4,5.4,8.9,13.8,15.2,19,17.2,16.8,9,3.5,2.2],"avg_temp":9.5,"year":1999},{"months":[1.1,3.9,5.2,10.2,14.6,17,15.3,17.6,13.9,10.6,6.1,3.1],"avg_temp":9.88333333333333,"year":2e3},{"months":[.9,2.3,4.2,7.1,14.4,14.3,18.6,18.6,11.8,12.5,3.8,-.2],"avg_temp":9.025,"year":2001},{"months":[1.2,5.1,5.4,8.1,13.8,17.4,17.7,18.8,13.2,8.3,5.6,.3],"avg_temp":9.575,"year":2002},{"months":[-.3,-1.9,5.3,8.5,14.1,19.4,19.1,20.6,13.9,5.9,6,1.8],"avg_temp":9.36666666666667,"year":2003},{"months":[-.1,2.4,4.1,9.4,11.6,15.3,16.8,18.4,14,10.1,4.2,1.1],"avg_temp":8.94166666666667,"year":2004},{"months":[2,-1,3.6,9.3,12.8,16.4,18,15.8,15,11,4.2,.9],"avg_temp":9,"year":2005},{"months":[-2.6,-.4,1.5,8,13.1,16.8,22,15.5,16.9,12.1,7,4.4],"avg_temp":9.525,"year":2006},{"months":[4.8,3.9,6.2,11.5,14.2,17.4,17.2,16.9,12.6,8.4,3.7,1.6],"avg_temp":9.86666666666667,"year":2007},{"months":[3.7,3.7,4.2,7.6,14.5,16.9,18,17.4,12.4,9.1,5.1,1.1],"avg_temp":9.475,"year":2008},{"months":[-2.2,.5,4.3,11.8,13.6,14.8,18,18.7,14.7,8.2,7.4,.3],"avg_temp":9.175,"year":2009},{"months":[-3.7,-.5,4.2,8.7,10.4,16.3,20.3,16.7,12.4,8.1,4.8,-3.7],"avg_temp":7.83333333333333,"year":2010},{"months":[1,.9,4.9,11.6,13.9,16.5,16.1,17.7,15.2,9.4,4.5,3.9],"avg_temp":9.63333333333333,"year":2011},{"months":[1.9,-2.5,6.9,8.2,14.2,15.5,17.4,18.4,13.6,8.7,5.2,1.5],"avg_temp":9.08333333333333,"year":2012},{"months":[.2,-.7,.1,8.1,11.8,15.7,19.5,17.9,13.3,10.6,4.6,3.6],"avg_temp":8.725,"year":2013},{"months":[2.1,4.3,6.9,10.8,12.4,16.1,19.3,16,14.9,11.9,6.5,2.7],"avg_temp":10.325,"year":2014},{"months":[2.2,.7,5.2,8.4,12.3,15.8,19.4,19.9,13,8.4,7.5,6.5],"avg_temp":9.94166666666667,"year":2015},{"months":[1,3.3,4,7.9,13.7,17,18.6,17.7,16.9,8.5,3.8,2.2],"avg_temp":9.55,"year":2016},{"months":[-2.2,2.9,7.2,7.4,14.1,17.8,18.1,17.9,12.8,11.1,5.1,2.7],"avg_temp":9.575,"year":2017}] This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1 @@ var years = [{"months":[-5.4,-.1,2.6,5.6,11.8,15.1,18.6,15.9,12.1,5,5.7,.9],"avg_temp":7.31666666666667,"year":1881},{"months":[.4,1.5,6,7.7,12,14.3,16.8,14.9,13.1,8.9,3.9,.6],"avg_temp":8.34166666666667,"year":1882},{"months":[-.3,2.3,-1.7,6.1,12.4,16.2,16.7,15.9,13.4,8.5,4.3,.8],"avg_temp":7.88333333333333,"year":1883},{"months":[2.9,2.7,4.7,6.1,12.7,13.1,18.2,17,14.3,7.9,1.7,1.7],"avg_temp":8.58333333333333,"year":1884},{"months":[-2.8,3,2.5,9.2,10,16.7,17.3,14.6,12.7,7.4,2.7,-.3],"avg_temp":7.75,"year":1885},{"months":[-1.3,-2.9,.4,8.7,12.7,14.3,16.8,16.9,15.1,9.5,5.1,.8],"avg_temp":8.00833333333333,"year":1886},{"months":[-3.7,-.8,1.1,7.1,10,15.5,18.7,15.7,12.2,5.5,3.1,-.8],"avg_temp":6.96666666666667,"year":1887},{"months":[-1.9,-2.6,.7,5.7,12.1,15.8,14.7,15.1,12.5,6.4,3.3,.6],"avg_temp":6.86666666666667,"year":1888},{"months":[-2.4,-2.6,.3,6.9,15.8,18.6,16.4,15.4,11.1,8,2.7,-1.6],"avg_temp":7.38333333333333,"year":1889},{"months":[2,-2.6,4.1,6.8,13.6,13.9,15.4,16.5,13.1,7.2,2.9,-5.3],"avg_temp":7.3,"year":1890},{"months":[-4.5,-.6,2.6,5.1,12.7,14.7,16.2,15,13.8,9.9,2.7,1.7],"avg_temp":7.44166666666667,"year":1891},{"months":[-1.8,.5,.5,7,12.2,15.1,16,18.1,13.8,7.5,3,-1.9],"avg_temp":7.5,"year":1892},{"months":[-7.3,1.8,4.3,8.8,12.3,15.8,17.4,17,12.4,9.8,2.2,.3],"avg_temp":7.9,"year":1893},{"months":[-1.8,1.6,4.7,9.9,11.3,14.2,17.8,15.4,11,8,4.9,.5],"avg_temp":8.125,"year":1894},{"months":[-4,-6.8,1.4,8.6,12.2,15.7,17.2,16.5,15.2,7.1,4.8,-.1],"avg_temp":7.31666666666667,"year":1895},{"months":[-.8,-.2,5.3,5.9,10.7,16.7,17,14.3,12.8,8.6,1.2,-.5],"avg_temp":7.58333333333333,"year":1896},{"months":[-2.9,1.2,5,7.2,10.6,17,16.5,17.1,12.3,7.3,2.8,1.3],"avg_temp":7.95,"year":1897},{"months":[2.3,1.1,2.9,7.3,11.3,14.8,14.4,18,13.6,8.9,4.7,3],"avg_temp":8.525,"year":1898},{"months":[2.1,2,2.6,7.1,11.1,14.7,17.3,16.8,12.5,7.8,6.4,-3.3],"avg_temp":8.09166666666667,"year":1899},{"months":[.7,1.1,.6,6.5,10.8,16,18.4,16.2,13.8,8.6,4.7,2.8],"avg_temp":8.35,"year":1900},{"months":[-3.7,-4.1,2.1,8,12.8,15.6,18.5,16.4,13.4,9.1,2.7,.9],"avg_temp":7.64166666666667,"year":1901},{"months":[2.8,-1.3,3.4,7.8,8.6,15.3,15.8,14.7,12,7.1,1.6,-1.8],"avg_temp":7.16666666666667,"year":1902},{"months":[.3,3.6,5.7,4.7,12.6,14.8,16.2,15.4,13.5,9.6,4.4,-.8],"avg_temp":8.33333333333333,"year":1903},{"months":[-1.3,1.1,3,8.8,12.3,15.2,18.8,16.5,11.9,8.3,3.3,2.4],"avg_temp":8.35833333333333,"year":1904},{"months":[-1.8,1.3,4.5,5.9,12.1,17,18.6,16.5,12.8,4.5,3.1,1],"avg_temp":7.95833333333333,"year":1905},{"months":[1,.3,2.2,8,13.1,14.7,17.2,16.5,12.5,9.8,6.3,-2.2],"avg_temp":8.28333333333333,"year":1906},{"months":[-.3,-1.5,2.6,6.1,12.9,14.6,14.5,15.7,13.1,11.2,3.3,1.5],"avg_temp":7.80833333333333,"year":1907},{"months":[-2.2,1.2,2.3,5.4,13.2,17,17.2,14.5,12.1,8.1,1.5,-.5],"avg_temp":7.48333333333333,"year":1908},{"months":[-1.6,-2.5,1.5,7.8,10.9,14.1,15,16.2,12.7,10.2,2,1.9],"avg_temp":7.35,"year":1909},{"months":[1.4,2.4,3.7,7.3,12.3,16.5,15.5,15.8,12,9.1,2.2,2.6],"avg_temp":8.4,"year":1910},{"months":[-1.1,1.3,4,7.2,13.1,14.9,19.2,19.4,14.4,8.5,4.7,3],"avg_temp":9.05,"year":1911},{"months":[-1.5,2.3,6,6.9,11.9,15.6,17.9,14,9.1,6.5,2.6,3.1],"avg_temp":7.86666666666667,"year":1912},{"months":[-.2,1.3,6,7.8,12.4,14.8,14.6,14.8,12.6,9.5,6.8,2],"avg_temp":8.53333333333333,"year":1913},{"months":[-3,3.1,4.7,9.8,10.9,14.6,17.6,17.2,12.4,8.2,3.4,3.5],"avg_temp":8.53333333333333,"year":1914},{"months":[.2,1,1.7,6.9,13.1,17.5,16.2,15.2,11.8,6.4,1.5,3.5],"avg_temp":7.91666666666667,"year":1915},{"months":[3.8,.8,3.9,8.2,13.1,12.8,16,15.9,12,8.5,4.5,1.8],"avg_temp":8.44166666666667,"year":1916},{"months":[-2.6,-3.8,0,4.3,15,18.8,17.3,16.7,14.5,7.2,5.1,-2.1],"avg_temp":7.53333333333333,"year":1917},{"months":[.7,1.7,4,9,14,13,16.5,15.9,12.9,7.9,3,3.9],"avg_temp":8.54166666666667,"year":1918},{"months":[.7,-.5,3,5.6,11.6,15,14.4,16.1,14.7,6,.5,.8],"avg_temp":7.325,"year":1919},{"months":[2.3,3,6.1,9.4,13.8,14.9,17.4,15,13,6.9,1.2,.6],"avg_temp":8.63333333333333,"year":1920},{"months":[4.2,1.3,5.6,7.8,14,14.4,18.7,17.3,13.5,11,-.2,.5],"avg_temp":9.00833333333333,"year":1921},{"months":[-2.7,-1.3,3.5,5.5,13.6,15.7,15.7,15.4,11.2,5,2.5,2.2],"avg_temp":7.19166666666667,"year":1922},{"months":[1.5,1,4.9,6.8,11.4,11.2,18.6,15.7,13.1,10.3,2.9,-1.7],"avg_temp":7.975,"year":1923},{"months":[-2.9,-2.6,2.2,6.3,13.7,15.1,16.7,14.5,13.6,9.4,3,1.5],"avg_temp":7.54166666666667,"year":1924},{"months":[2.5,3.6,1.3,8.2,13.9,15,17.9,16.5,11,8.5,2,-.4],"avg_temp":8.33333333333333,"year":1925},{"months":[0,4.4,4,9.7,10.7,13.8,17.4,16,14.6,7.8,6,.6],"avg_temp":8.75,"year":1926},{"months":[1.8,.9,5.9,7.1,10.9,14.1,17.3,16.4,13.5,8.6,2.7,-2.6],"avg_temp":8.05,"year":1927},{"months":[1.6,2.5,2.9,7.5,10.1,14.1,18.4,16.2,12.5,8.6,6.2,-.3],"avg_temp":8.35833333333333,"year":1928},{"months":[-4.7,-9.6,2.6,4.5,13.1,14.5,17.5,17.1,15.5,9.7,4.7,3.6],"avg_temp":7.375,"year":1929},{"months":[2.3,-.2,4.2,8.3,11.6,18.2,16.4,16,13.2,8.7,5.9,.6],"avg_temp":8.76666666666667,"year":1930},{"months":[.2,-1.2,.2,5.8,15.1,16.1,16.8,15.4,10.2,7.3,4.7,.1],"avg_temp":7.55833333333333,"year":1931},{"months":[1.8,-1.9,.8,7,12.5,14.6,17.9,18.7,15,8.5,4.2,.8],"avg_temp":8.325,"year":1932},{"months":[-2.6,.1,5.1,7,11.5,14.3,18.1,16.9,13.5,8.8,2.5,-3.9],"avg_temp":7.60833333333333,"year":1933},{"months":[.5,1.2,4.1,10.3,13.3,16.4,18.3,16.4,15.6,9.6,4.1,4.8],"avg_temp":9.55,"year":1934},{"months":[-.8,1.9,2.7,7.3,10.5,17.2,17.8,16.6,13.7,8.6,5.2,.4],"avg_temp":8.425,"year":1935},{"months":[3.1,.2,5,6.2,12.3,16.2,16.8,16.2,13,6.4,3.8,1.5],"avg_temp":8.39166666666667,"year":1936},{"months":[-.8,2.2,2.9,8,14.7,16.3,17.2,17.1,13.3,9.5,3.3,-.5],"avg_temp":8.6,"year":1937},{"months":[1.7,.9,7,5,10.7,16,16.7,17.7,13.8,8.7,7,-1.9],"avg_temp":8.60833333333333,"year":1938},{"months":[2.6,1.6,1.7,8.6,10.5,16.3,17,17.5,13.4,6.5,5.5,-1.6],"avg_temp":8.3,"year":1939},{"months":[-9,-4.3,2.8,7.9,12.2,16.7,16.2,14.5,12.4,7.6,5.4,-2.8],"avg_temp":6.63333333333333,"year":1940},{"months":[-5.4,-.2,3.3,5.5,9.2,16.3,18.6,15,12.3,8,2,1.5],"avg_temp":7.175,"year":1941},{"months":[-7.9,-5.4,1.4,7.5,12.1,14.4,16.1,17.6,15.1,11.1,3.3,2.1],"avg_temp":7.28333333333333,"year":1942},{"months":[-.4,2.9,5.6,9.3,12.8,14.4,17.7,17.9,13.8,9.9,2.7,.2],"avg_temp":8.9,"year":1943},{"months":[3.1,-1.1,.9,8.6,11.6,14.2,17.4,19.6,12.8,8.6,4.1,-.4],"avg_temp":8.28333333333333,"year":1944},{"months":[-4,4,6,8.8,14,16.6,17.9,16.2,13.8,9.7,3.6,1.3],"avg_temp":8.99166666666667,"year":1945},{"months":[-1.8,2.4,3.7,10.2,13.9,14.8,18.4,16.2,14.1,7,4,-2.3],"avg_temp":8.38333333333333,"year":1946},{"months":[-4.7,-6.6,2.6,9.4,14.7,17.9,18.9,18.9,16.8,7.8,5.3,1.4],"avg_temp":8.53333333333333,"year":1947},{"months":[3.1,.5,5.7,10,13.6,15.6,16.2,16.4,13.8,8.7,4.2,.9],"avg_temp":9.05833333333333,"year":1948},{"months":[1.2,1.7,2,10.3,12.2,14.1,17.6,17,16.3,10.6,3.7,3],"avg_temp":9.14166666666667,"year":1949},{"months":[-1,3,4.8,6.8,13.8,17.6,18,17.5,12.9,7.8,4.3,-2],"avg_temp":8.625,"year":1950},{"months":[1.5,1.9,2.2,7.3,11.5,15.3,17.1,17.2,14.5,7.3,6.5,2.5],"avg_temp":8.73333333333333,"year":1951},{"months":[.2,-.1,2.6,10.3,12.3,15.2,18.3,17.8,10.5,7.2,1.7,-.5],"avg_temp":7.95833333333333,"year":1952},{"months":[-.8,-.1,4.8,9,13.2,16.1,17.4,16.4,13.5,10.4,4.8,2.5],"avg_temp":8.93333333333333,"year":1953},{"months":[-3.2,-3.5,4.3,5.8,12.2,16,14.4,15.8,13.5,9.9,4.1,3.2],"avg_temp":7.70833333333333,"year":1954},{"months":[-1.7,-1.9,.4,6.9,10.3,14.6,17.4,16.8,13.4,8,3.8,2.6],"avg_temp":7.55,"year":1955},{"months":[.2,-9.6,2.9,5.3,12.5,13.2,16.9,14.1,13.8,8.2,2.5,2],"avg_temp":6.83333333333333,"year":1956},{"months":[.3,3.8,6.4,7.5,9.7,16.7,17.7,15.1,11.8,9.2,4.5,.5],"avg_temp":8.6,"year":1957},{"months":[-.4,1.9,-.3,5.2,13.3,14.5,17,16.9,14.5,9.3,4.3,2.5],"avg_temp":8.225,"year":1958},{"months":[-.1,-.1,6.2,9.4,12.7,16.1,19.3,17.3,13.5,8.5,3.3,2.2],"avg_temp":9.025,"year":1959},{"months":[-.1,.4,4.3,7.4,12.8,16.2,15.4,15.8,12.5,9.1,6,1.2],"avg_temp":8.41666666666667,"year":1960},{"months":[-.8,4.4,6,10.6,10.3,16,15.1,15.7,16.3,10.5,3.7,-.6],"avg_temp":8.93333333333333,"year":1961},{"months":[1.7,.3,.2,8.2,9.8,14.2,15,15.8,12.3,9,2.7,-3.3],"avg_temp":7.15833333333333,"year":1962},{"months":[-7.4,-5.7,2.5,8.4,12,15.8,17.7,15.9,13.7,8.1,7.4,-3.1],"avg_temp":7.10833333333333,"year":1963},{"months":[-2.6,.6,.6,8.6,13.6,16.9,18.1,15.9,13.6,7.1,4.9,.4],"avg_temp":8.14166666666667,"year":1964},{"months":[1.2,-1.8,2.3,6.7,11.2,15.5,15,14.9,12.7,8.2,1.4,2.6],"avg_temp":7.49166666666667,"year":1965},{"months":[-2.7,3.5,3.3,8.6,13,16.9,15.6,15.5,13.2,11.1,2.2,2],"avg_temp":8.51666666666667,"year":1966},{"months":[.7,2.8,5.4,6.5,12.5,14.7,18.6,16.4,13.8,11.1,3.9,.4],"avg_temp":8.9,"year":1967},{"months":[-1.1,.7,4.4,9,10.9,16,16.2,16.4,13.4,10.2,3.7,-2],"avg_temp":8.15,"year":1968},{"months":[.5,-2.1,.9,7,12.9,14.8,18.4,16.5,13.8,10,5.1,-4.7],"avg_temp":7.75833333333333,"year":1969},{"months":[-2.6,-1.1,1.2,5.3,11.4,17.2,16.1,16.8,13.2,8.9,5.8,.5],"avg_temp":7.725,"year":1970},{"months":[-1.1,1.4,1,8.2,14,13.9,18,17.8,12,8.8,3.5,3.6],"avg_temp":8.425,"year":1971},{"months":[-2.3,2,5.3,7.2,11.3,14.5,17.7,15.7,10.7,6.8,4.3,.8],"avg_temp":7.83333333333333,"year":1972},{"months":[0,1,3.9,5.1,12.5,16.1,17.2,17.7,14.1,7.3,3.3,.2],"avg_temp":8.2,"year":1973},{"months":[3.3,3.2,5.7,8,11,14.1,15.3,17.1,13.2,5.5,4.9,4.8],"avg_temp":8.84166666666667,"year":1974},{"months":[4.5,1.4,3.6,6.8,11.8,14.7,18.2,18.8,15.5,7.5,3.1,1.2],"avg_temp":8.925,"year":1975},{"months":[1.2,.5,1.3,6.9,12.8,17.4,19.3,16.2,12.7,9.5,4.8,-1],"avg_temp":8.46666666666667,"year":1976},{"months":[.4,3,6.1,5.7,11.7,15.5,16.5,15.9,11.9,10.2,5.1,2.1],"avg_temp":8.675,"year":1977},{"months":[.8,-1.4,4.8,6.5,11.6,14.8,15.5,15.1,12.2,9.1,4.2,.3],"avg_temp":7.79166666666667,"year":1978},{"months":[-4.5,-1.8,3.7,6.3,12.4,16.5,15.3,15.5,13.1,8.6,3.7,3.8],"avg_temp":7.71666666666667,"year":1979},{"months":[-2.7,2.1,3.3,6,10.7,14.7,15.1,16.6,13.9,8,3,.7],"avg_temp":7.61666666666667,"year":1980},{"months":[-1.5,-.4,6.8,7.8,13.2,15.3,16.4,16.4,14,8.1,4.6,-2.2],"avg_temp":8.20833333333333,"year":1981},{"months":[-2.3,-.1,4.2,6.5,12.4,16.3,18.9,17.3,15.7,9.7,6,2.2],"avg_temp":8.9,"year":1982},{"months":[4,-1.7,4.6,8.6,11.3,16.3,20.4,18.1,13.7,9.2,3.5,.7],"avg_temp":9.05833333333333,"year":1983},{"months":[1.1,-.3,2,6.8,10.8,13.7,15.9,17,12.3,10.2,4.9,1.2],"avg_temp":7.96666666666667,"year":1984},{"months":[-5.5,-3.1,2.8,7.6,13.4,13.5,17.4,16.2,13.5,8.8,.8,3.7],"avg_temp":7.425,"year":1985},{"months":[.1,-6.4,3,6.3,14.1,15.9,17,16.3,11.3,9.6,5.9,2.1],"avg_temp":7.93333333333333,"year":1986},{"months":[-5.9,-.3,-.4,9.1,9.7,13.9,16.9,15.5,14.5,9.4,4.9,2.1],"avg_temp":7.45,"year":1987},{"months":[3.5,2.1,2.7,8,14.2,15,17,17,13.2,9.7,3,3.4],"avg_temp":9.06666666666667,"year":1988},{"months":[2.5,3.4,7,7.2,13.8,15.3,17.7,17,14.4,10.4,2.7,2.4],"avg_temp":9.48333333333333,"year":1989},{"months":[2.5,5.7,6.9,7.4,13.9,15.2,16.7,18.3,11.8,10.2,4.5,.8],"avg_temp":9.49166666666667,"year":1990},{"months":[1.5,-2.4,6.4,7.1,9.5,13.5,19.2,17.9,14.8,8.2,4,.7],"avg_temp":8.36666666666667,"year":1991},{"months":[1,2.8,4.8,7.8,14.5,17.3,18.6,19.1,13.4,6.5,5.4,1.3],"avg_temp":9.375,"year":1992},{"months":[2.5,-.7,3.6,10.4,14.6,15.7,16.1,15.8,12.2,7.9,.4,3.2],"avg_temp":8.475,"year":1993},{"months":[3,-.2,6.3,7.9,12.6,15.9,21.3,17.8,13.2,7.6,7.2,3.6],"avg_temp":9.68333333333333,"year":1994},{"months":[.2,4.6,3.1,8.5,12.2,14.3,20.1,18.3,12.6,11.8,3,-1.8],"avg_temp":8.90833333333333,"year":1995},{"months":[-2.8,-2.2,1,8.4,11.2,15.7,15.9,17.2,10.9,9.2,4.5,-2.4],"avg_temp":7.21666666666667,"year":1996},{"months":[-2.6,4.1,5.8,6.4,12.7,15.9,17.2,19.8,13.7,7.7,4,2.2],"avg_temp":8.90833333333333,"year":1997},{"months":[2.4,4.3,5,8.9,14,16.5,16.4,16.7,13.4,8.7,1.6,1],"avg_temp":9.075,"year":1998},{"months":[2.6,.4,5.4,8.9,13.8,15.2,19,17.2,16.8,9,3.5,2.2],"avg_temp":9.5,"year":1999},{"months":[1.1,3.9,5.2,10.2,14.6,17,15.3,17.6,13.9,10.6,6.1,3.1],"avg_temp":9.88333333333333,"year":2e3},{"months":[.9,2.3,4.2,7.1,14.4,14.3,18.6,18.6,11.8,12.5,3.8,-.2],"avg_temp":9.025,"year":2001},{"months":[1.2,5.1,5.4,8.1,13.8,17.4,17.7,18.8,13.2,8.3,5.6,.3],"avg_temp":9.575,"year":2002},{"months":[-.3,-1.9,5.3,8.5,14.1,19.4,19.1,20.6,13.9,5.9,6,1.8],"avg_temp":9.36666666666667,"year":2003},{"months":[-.1,2.4,4.1,9.4,11.6,15.3,16.8,18.4,14,10.1,4.2,1.1],"avg_temp":8.94166666666667,"year":2004},{"months":[2,-1,3.6,9.3,12.8,16.4,18,15.8,15,11,4.2,.9],"avg_temp":9,"year":2005},{"months":[-2.6,-.4,1.5,8,13.1,16.8,22,15.5,16.9,12.1,7,4.4],"avg_temp":9.525,"year":2006},{"months":[4.8,3.9,6.2,11.5,14.2,17.4,17.2,16.9,12.6,8.4,3.7,1.6],"avg_temp":9.86666666666667,"year":2007},{"months":[3.7,3.7,4.2,7.6,14.5,16.9,18,17.4,12.4,9.1,5.1,1.1],"avg_temp":9.475,"year":2008},{"months":[-2.2,.5,4.3,11.8,13.6,14.8,18,18.7,14.7,8.2,7.4,.3],"avg_temp":9.175,"year":2009},{"months":[-3.7,-.5,4.2,8.7,10.4,16.3,20.3,16.7,12.4,8.1,4.8,-3.7],"avg_temp":7.83333333333333,"year":2010},{"months":[1,.9,4.9,11.6,13.9,16.5,16.1,17.7,15.2,9.4,4.5,3.9],"avg_temp":9.63333333333333,"year":2011},{"months":[1.9,-2.5,6.9,8.2,14.2,15.5,17.4,18.4,13.6,8.7,5.2,1.5],"avg_temp":9.08333333333333,"year":2012},{"months":[.2,-.7,.1,8.1,11.8,15.7,19.5,17.9,13.3,10.6,4.6,3.6],"avg_temp":8.725,"year":2013},{"months":[2.1,4.3,6.9,10.8,12.4,16.1,19.3,16,14.9,11.9,6.5,2.7],"avg_temp":10.325,"year":2014},{"months":[2.2,.7,5.2,8.4,12.3,15.8,19.4,19.9,13,8.4,7.5,6.5],"avg_temp":9.94166666666667,"year":2015},{"months":[1,3.3,4,7.9,13.7,17,18.6,17.7,16.9,8.5,3.8,2.2],"avg_temp":9.55,"year":2016},{"months":[-2.2,2.9,7.2,7.4,14.1,17.8,18.1,17.9,12.8,11.1,5.1,2.7],"avg_temp":9.575,"year":2017}] This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1 @@ {trendlines:{0:{slope:.0142946512355333,intercept:-28.23481388802},1:{slope:.00840043928043856,intercept:-15.9962215946063},all:{slope:.0107990707845127,intercept:-12.7116627029214},3:{slope:.0127322832308574,intercept:-17.1143397817449},4:{slope:.00809677868622273,intercept:-3.33901787487817},5:{slope:.00658235709115982,intercept:2.71552093774046},6:{slope:.0102450061531226,intercept:-2.66104529261399},7:{slope:.0138116750984748,intercept:-10.2773489275112},8:{slope:.00726193365318198,intercept:-.838180222898394},9:{slope:.0122244105512723,intercept:-15.167711930853},10:{slope:.0115220191535833,intercept:-18.4651744544215},11:{slope:.0117054343159034,intercept:-21.9343294379002},2:{slope:.0133316133510202,intercept:-22.4211396481038}},monthAverages:[{avg_temp:-.367391304347826,month:0},{avg_temp:.380434782608696,month:1},{avg_temp:3.56884057971015,month:2},{avg_temp:7.70724637681159,month:3},{avg_temp:12.445652173913,month:4},{avg_temp:15.5478260869565,month:5},{avg_temp:17.3115942028986,month:6},{avg_temp:16.6416058394161,month:7},{avg_temp:13.3153284671533,month:8},{avg_temp:8.65766423357664,month:9},{avg_temp:3.99124087591241,month:10},{avg_temp:.87956204379562,month:11}],extremes:[{year:1940,type:"min",temp:-9,month:0},{year:2007,type:"max",temp:4.8,month:0},{year:1929,type:"min",temp:-9.6,month:1},{year:1990,type:"max",temp:5.7,month:1},{year:1883,type:"min",temp:-1.7,month:2},{year:2017,type:"max",temp:7.2,month:2},{year:1917,type:"min",temp:4.3,month:3},{year:2018,type:"max",temp:12.3,month:3},{year:1902,type:"min",temp:8.6,month:4},{year:2018,type:"max",temp:16,month:4},{year:1923,type:"min",temp:11.2,month:5},{year:2003,type:"max",temp:19.4,month:5},{year:1898,type:"min",temp:14.4,month:6},{year:2006,type:"max",temp:22,month:6},{year:1912,type:"min",temp:14,month:7},{year:2003,type:"max",temp:20.6,month:7},{year:1912,type:"min",temp:9.1,month:8},{year:2006,type:"max",temp:16.9,month:8},{year:1905,type:"min",temp:4.5,month:9},{year:2001,type:"max",temp:12.5,month:9},{year:1921,type:"min",temp:-.2,month:10},{year:2015,type:"max",temp:7.5,month:10},{year:1890,type:"min",temp:-5.3,month:11},{year:2015,type:"max",temp:6.5,month:11}],decades:[{start:1889,months:[-2.12,-.66,3.11,7.35,12.27,15.65,16.43,16.33,12.91,8.23,3.19,-.26],end:1898},{start:1899,months:[-.24,.37,2.9,6.83,11.95,15.49,17.25,15.92,12.76,8.41,3.73,-3.32931382115986e-17],end:1908},{start:1909,months:[-.39,.76,3.55,7.52,12.67,15.26,16.58,16.11,12.44,8.2,3.58,2.32],end:1918},{start:1919,months:[.9,1.23,3.94,7.39,12.37,14.33,17.25,15.91,13.07,8.21,2.68,.12],end:1928},{start:1929,months:[.07,-.64,3.46,6.94,12.53,15.98,17.35,16.81,13.68,8.58,4.54,.55],end:1938},{start:1939,months:[-2.44,-.62,3.37,8.58,12.46,15.72,17.44,16.98,13.83,8.49,4.01,.03],end:1948},{start:1949,months:[-.37,-.29,3.01,7.44,12.1,15.33,17.18,16.46,13.47,8.79,4.02,1.63],end:1958},{start:1959,months:[-1.12,.51,3.52,8.34,11.88,15.83,16.6,15.96,13.5,9.29,3.92,-.02],end:1968},{start:1969,months:[.47,.79,3.38,6.67,12.1,15.3,17.22,16.76,12.93,8.36,4.41,.78],end:1978},{start:1979,months:[-1.37,-.99,3.27,7.3,12.22,15.11,17.03,16.59,13.52,9.13,4.03,1.77],end:1988},{start:1989,months:[1.02,1.94,4.99,8,12.9,15.53,17.92,17.79,13.04,8.82,3.73,1.1],end:1998},{start:1999,months:[1.33,1.84,4.51,8.86,13.69,16.61,18.17,17.68,14.05,9.7,4.92,1.63],end:2008},{start:2009,months:[.4,.7,4.61,9.52,13.24,16.32,18.7,17.8777777777778,14.0888888888889,9.43333333333333,5.48888888888889,2.18888888888889],end:2018}],years:[{months:[-5.4,-.1,2.6,5.6,11.8,15.1,18.6,15.9,12.1,5,5.7,.9],avg_temp:7.31666666666667,year:1881},{months:[.4,1.5,6,7.7,12,14.3,16.8,14.9,13.1,8.9,3.9,.6],avg_temp:8.34166666666667,year:1882},{months:[-.3,2.3,-1.7,6.1,12.4,16.2,16.7,15.9,13.4,8.5,4.3,.8],avg_temp:7.88333333333333,year:1883},{months:[2.9,2.7,4.7,6.1,12.7,13.1,18.2,17,14.3,7.9,1.7,1.7],avg_temp:8.58333333333333,year:1884},{months:[-2.8,3,2.5,9.2,10,16.7,17.3,14.6,12.7,7.4,2.7,-.3],avg_temp:7.75,year:1885},{months:[-1.3,-2.9,.4,8.7,12.7,14.3,16.8,16.9,15.1,9.5,5.1,.8],avg_temp:8.00833333333333,year:1886},{months:[-3.7,-.8,1.1,7.1,10,15.5,18.7,15.7,12.2,5.5,3.1,-.8],avg_temp:6.96666666666667,year:1887},{months:[-1.9,-2.6,.7,5.7,12.1,15.8,14.7,15.1,12.5,6.4,3.3,.6],avg_temp:6.86666666666667,year:1888},{months:[-2.4,-2.6,.3,6.9,15.8,18.6,16.4,15.4,11.1,8,2.7,-1.6],avg_temp:7.38333333333333,year:1889},{months:[2,-2.6,4.1,6.8,13.6,13.9,15.4,16.5,13.1,7.2,2.9,-5.3],avg_temp:7.3,year:1890},{months:[-4.5,-.6,2.6,5.1,12.7,14.7,16.2,15,13.8,9.9,2.7,1.7],avg_temp:7.44166666666667,year:1891},{months:[-1.8,.5,.5,7,12.2,15.1,16,18.1,13.8,7.5,3,-1.9],avg_temp:7.5,year:1892},{months:[-7.3,1.8,4.3,8.8,12.3,15.8,17.4,17,12.4,9.8,2.2,.3],avg_temp:7.9,year:1893},{months:[-1.8,1.6,4.7,9.9,11.3,14.2,17.8,15.4,11,8,4.9,.5],avg_temp:8.125,year:1894},{months:[-4,-6.8,1.4,8.6,12.2,15.7,17.2,16.5,15.2,7.1,4.8,-.1],avg_temp:7.31666666666667,year:1895},{months:[-.8,-.2,5.3,5.9,10.7,16.7,17,14.3,12.8,8.6,1.2,-.5],avg_temp:7.58333333333333,year:1896},{months:[-2.9,1.2,5,7.2,10.6,17,16.5,17.1,12.3,7.3,2.8,1.3],avg_temp:7.95,year:1897},{months:[2.3,1.1,2.9,7.3,11.3,14.8,14.4,18,13.6,8.9,4.7,3],avg_temp:8.525,year:1898},{months:[2.1,2,2.6,7.1,11.1,14.7,17.3,16.8,12.5,7.8,6.4,-3.3],avg_temp:8.09166666666667,year:1899},{months:[.7,1.1,.6,6.5,10.8,16,18.4,16.2,13.8,8.6,4.7,2.8],avg_temp:8.35,year:1900},{months:[-3.7,-4.1,2.1,8,12.8,15.6,18.5,16.4,13.4,9.1,2.7,.9],avg_temp:7.64166666666667,year:1901},{months:[2.8,-1.3,3.4,7.8,8.6,15.3,15.8,14.7,12,7.1,1.6,-1.8],avg_temp:7.16666666666667,year:1902},{months:[.3,3.6,5.7,4.7,12.6,14.8,16.2,15.4,13.5,9.6,4.4,-.8],avg_temp:8.33333333333333,year:1903},{months:[-1.3,1.1,3,8.8,12.3,15.2,18.8,16.5,11.9,8.3,3.3,2.4],avg_temp:8.35833333333333,year:1904},{months:[-1.8,1.3,4.5,5.9,12.1,17,18.6,16.5,12.8,4.5,3.1,1],avg_temp:7.95833333333333,year:1905},{months:[1,.3,2.2,8,13.1,14.7,17.2,16.5,12.5,9.8,6.3,-2.2],avg_temp:8.28333333333333,year:1906},{months:[-.3,-1.5,2.6,6.1,12.9,14.6,14.5,15.7,13.1,11.2,3.3,1.5],avg_temp:7.80833333333333,year:1907},{months:[-2.2,1.2,2.3,5.4,13.2,17,17.2,14.5,12.1,8.1,1.5,-.5],avg_temp:7.48333333333333,year:1908},{months:[-1.6,-2.5,1.5,7.8,10.9,14.1,15,16.2,12.7,10.2,2,1.9],avg_temp:7.35,year:1909},{months:[1.4,2.4,3.7,7.3,12.3,16.5,15.5,15.8,12,9.1,2.2,2.6],avg_temp:8.4,year:1910},{months:[-1.1,1.3,4,7.2,13.1,14.9,19.2,19.4,14.4,8.5,4.7,3],avg_temp:9.05,year:1911},{months:[-1.5,2.3,6,6.9,11.9,15.6,17.9,14,9.1,6.5,2.6,3.1],avg_temp:7.86666666666667,year:1912},{months:[-.2,1.3,6,7.8,12.4,14.8,14.6,14.8,12.6,9.5,6.8,2],avg_temp:8.53333333333333,year:1913},{months:[-3,3.1,4.7,9.8,10.9,14.6,17.6,17.2,12.4,8.2,3.4,3.5],avg_temp:8.53333333333333,year:1914},{months:[.2,1,1.7,6.9,13.1,17.5,16.2,15.2,11.8,6.4,1.5,3.5],avg_temp:7.91666666666667,year:1915},{months:[3.8,.8,3.9,8.2,13.1,12.8,16,15.9,12,8.5,4.5,1.8],avg_temp:8.44166666666667,year:1916},{months:[-2.6,-3.8,0,4.3,15,18.8,17.3,16.7,14.5,7.2,5.1,-2.1],avg_temp:7.53333333333333,year:1917},{months:[.7,1.7,4,9,14,13,16.5,15.9,12.9,7.9,3,3.9],avg_temp:8.54166666666667,year:1918},{months:[.7,-.5,3,5.6,11.6,15,14.4,16.1,14.7,6,.5,.8],avg_temp:7.325,year:1919},{months:[2.3,3,6.1,9.4,13.8,14.9,17.4,15,13,6.9,1.2,.6],avg_temp:8.63333333333333,year:1920},{months:[4.2,1.3,5.6,7.8,14,14.4,18.7,17.3,13.5,11,-.2,.5],avg_temp:9.00833333333333,year:1921},{months:[-2.7,-1.3,3.5,5.5,13.6,15.7,15.7,15.4,11.2,5,2.5,2.2],avg_temp:7.19166666666667,year:1922},{months:[1.5,1,4.9,6.8,11.4,11.2,18.6,15.7,13.1,10.3,2.9,-1.7],avg_temp:7.975,year:1923},{months:[-2.9,-2.6,2.2,6.3,13.7,15.1,16.7,14.5,13.6,9.4,3,1.5],avg_temp:7.54166666666667,year:1924},{months:[2.5,3.6,1.3,8.2,13.9,15,17.9,16.5,11,8.5,2,-.4],avg_temp:8.33333333333333,year:1925},{months:[0,4.4,4,9.7,10.7,13.8,17.4,16,14.6,7.8,6,.6],avg_temp:8.75,year:1926},{months:[1.8,.9,5.9,7.1,10.9,14.1,17.3,16.4,13.5,8.6,2.7,-2.6],avg_temp:8.05,year:1927},{months:[1.6,2.5,2.9,7.5,10.1,14.1,18.4,16.2,12.5,8.6,6.2,-.3],avg_temp:8.35833333333333,year:1928},{months:[-4.7,-9.6,2.6,4.5,13.1,14.5,17.5,17.1,15.5,9.7,4.7,3.6],avg_temp:7.375,year:1929},{months:[2.3,-.2,4.2,8.3,11.6,18.2,16.4,16,13.2,8.7,5.9,.6],avg_temp:8.76666666666667,year:1930},{months:[.2,-1.2,.2,5.8,15.1,16.1,16.8,15.4,10.2,7.3,4.7,.1],avg_temp:7.55833333333333,year:1931},{months:[1.8,-1.9,.8,7,12.5,14.6,17.9,18.7,15,8.5,4.2,.8],avg_temp:8.325,year:1932},{months:[-2.6,.1,5.1,7,11.5,14.3,18.1,16.9,13.5,8.8,2.5,-3.9],avg_temp:7.60833333333333,year:1933},{months:[.5,1.2,4.1,10.3,13.3,16.4,18.3,16.4,15.6,9.6,4.1,4.8],avg_temp:9.55,year:1934},{months:[-.8,1.9,2.7,7.3,10.5,17.2,17.8,16.6,13.7,8.6,5.2,.4],avg_temp:8.425,year:1935},{months:[3.1,.2,5,6.2,12.3,16.2,16.8,16.2,13,6.4,3.8,1.5],avg_temp:8.39166666666667,year:1936},{months:[-.8,2.2,2.9,8,14.7,16.3,17.2,17.1,13.3,9.5,3.3,-.5],avg_temp:8.6,year:1937},{months:[1.7,.9,7,5,10.7,16,16.7,17.7,13.8,8.7,7,-1.9],avg_temp:8.60833333333333,year:1938},{months:[2.6,1.6,1.7,8.6,10.5,16.3,17,17.5,13.4,6.5,5.5,-1.6],avg_temp:8.3,year:1939},{months:[-9,-4.3,2.8,7.9,12.2,16.7,16.2,14.5,12.4,7.6,5.4,-2.8],avg_temp:6.63333333333333,year:1940},{months:[-5.4,-.2,3.3,5.5,9.2,16.3,18.6,15,12.3,8,2,1.5],avg_temp:7.175,year:1941},{months:[-7.9,-5.4,1.4,7.5,12.1,14.4,16.1,17.6,15.1,11.1,3.3,2.1],avg_temp:7.28333333333333,year:1942},{months:[-.4,2.9,5.6,9.3,12.8,14.4,17.7,17.9,13.8,9.9,2.7,.2],avg_temp:8.9,year:1943},{months:[3.1,-1.1,.9,8.6,11.6,14.2,17.4,19.6,12.8,8.6,4.1,-.4],avg_temp:8.28333333333333,year:1944},{months:[-4,4,6,8.8,14,16.6,17.9,16.2,13.8,9.7,3.6,1.3],avg_temp:8.99166666666667,year:1945},{months:[-1.8,2.4,3.7,10.2,13.9,14.8,18.4,16.2,14.1,7,4,-2.3],avg_temp:8.38333333333333,year:1946},{months:[-4.7,-6.6,2.6,9.4,14.7,17.9,18.9,18.9,16.8,7.8,5.3,1.4],avg_temp:8.53333333333333,year:1947},{months:[3.1,.5,5.7,10,13.6,15.6,16.2,16.4,13.8,8.7,4.2,.9],avg_temp:9.05833333333333,year:1948},{months:[1.2,1.7,2,10.3,12.2,14.1,17.6,17,16.3,10.6,3.7,3],avg_temp:9.14166666666667,year:1949},{months:[-1,3,4.8,6.8,13.8,17.6,18,17.5,12.9,7.8,4.3,-2],avg_temp:8.625,year:1950},{months:[1.5,1.9,2.2,7.3,11.5,15.3,17.1,17.2,14.5,7.3,6.5,2.5],avg_temp:8.73333333333333,year:1951},{months:[.2,-.1,2.6,10.3,12.3,15.2,18.3,17.8,10.5,7.2,1.7,-.5],avg_temp:7.95833333333333,year:1952},{months:[-.8,-.1,4.8,9,13.2,16.1,17.4,16.4,13.5,10.4,4.8,2.5],avg_temp:8.93333333333333,year:1953},{months:[-3.2,-3.5,4.3,5.8,12.2,16,14.4,15.8,13.5,9.9,4.1,3.2],avg_temp:7.70833333333333,year:1954},{months:[-1.7,-1.9,.4,6.9,10.3,14.6,17.4,16.8,13.4,8,3.8,2.6],avg_temp:7.55,year:1955},{months:[.2,-9.6,2.9,5.3,12.5,13.2,16.9,14.1,13.8,8.2,2.5,2],avg_temp:6.83333333333333,year:1956},{months:[.3,3.8,6.4,7.5,9.7,16.7,17.7,15.1,11.8,9.2,4.5,.5],avg_temp:8.6,year:1957},{months:[-.4,1.9,-.3,5.2,13.3,14.5,17,16.9,14.5,9.3,4.3,2.5],avg_temp:8.225,year:1958},{months:[-.1,-.1,6.2,9.4,12.7,16.1,19.3,17.3,13.5,8.5,3.3,2.2],avg_temp:9.025,year:1959},{months:[-.1,.4,4.3,7.4,12.8,16.2,15.4,15.8,12.5,9.1,6,1.2],avg_temp:8.41666666666667,year:1960},{months:[-.8,4.4,6,10.6,10.3,16,15.1,15.7,16.3,10.5,3.7,-.6],avg_temp:8.93333333333333,year:1961},{months:[1.7,.3,.2,8.2,9.8,14.2,15,15.8,12.3,9,2.7,-3.3],avg_temp:7.15833333333333,year:1962},{months:[-7.4,-5.7,2.5,8.4,12,15.8,17.7,15.9,13.7,8.1,7.4,-3.1],avg_temp:7.10833333333333,year:1963},{months:[-2.6,.6,.6,8.6,13.6,16.9,18.1,15.9,13.6,7.1,4.9,.4],avg_temp:8.14166666666667,year:1964},{months:[1.2,-1.8,2.3,6.7,11.2,15.5,15,14.9,12.7,8.2,1.4,2.6],avg_temp:7.49166666666667,year:1965},{months:[-2.7,3.5,3.3,8.6,13,16.9,15.6,15.5,13.2,11.1,2.2,2],avg_temp:8.51666666666667,year:1966},{months:[.7,2.8,5.4,6.5,12.5,14.7,18.6,16.4,13.8,11.1,3.9,.4],avg_temp:8.9,year:1967},{months:[-1.1,.7,4.4,9,10.9,16,16.2,16.4,13.4,10.2,3.7,-2],avg_temp:8.15,year:1968},{months:[.5,-2.1,.9,7,12.9,14.8,18.4,16.5,13.8,10,5.1,-4.7],avg_temp:7.75833333333333,year:1969},{months:[-2.6,-1.1,1.2,5.3,11.4,17.2,16.1,16.8,13.2,8.9,5.8,.5],avg_temp:7.725,year:1970},{months:[-1.1,1.4,1,8.2,14,13.9,18,17.8,12,8.8,3.5,3.6],avg_temp:8.425,year:1971},{months:[-2.3,2,5.3,7.2,11.3,14.5,17.7,15.7,10.7,6.8,4.3,.8],avg_temp:7.83333333333333,year:1972},{months:[0,1,3.9,5.1,12.5,16.1,17.2,17.7,14.1,7.3,3.3,.2],avg_temp:8.2,year:1973},{months:[3.3,3.2,5.7,8,11,14.1,15.3,17.1,13.2,5.5,4.9,4.8],avg_temp:8.84166666666667,year:1974},{months:[4.5,1.4,3.6,6.8,11.8,14.7,18.2,18.8,15.5,7.5,3.1,1.2],avg_temp:8.925,year:1975},{months:[1.2,.5,1.3,6.9,12.8,17.4,19.3,16.2,12.7,9.5,4.8,-1],avg_temp:8.46666666666667,year:1976},{months:[.4,3,6.1,5.7,11.7,15.5,16.5,15.9,11.9,10.2,5.1,2.1],avg_temp:8.675,year:1977},{months:[.8,-1.4,4.8,6.5,11.6,14.8,15.5,15.1,12.2,9.1,4.2,.3],avg_temp:7.79166666666667,year:1978},{months:[-4.5,-1.8,3.7,6.3,12.4,16.5,15.3,15.5,13.1,8.6,3.7,3.8],avg_temp:7.71666666666667,year:1979},{months:[-2.7,2.1,3.3,6,10.7,14.7,15.1,16.6,13.9,8,3,.7],avg_temp:7.61666666666667,year:1980},{months:[-1.5,-.4,6.8,7.8,13.2,15.3,16.4,16.4,14,8.1,4.6,-2.2],avg_temp:8.20833333333333,year:1981},{months:[-2.3,-.1,4.2,6.5,12.4,16.3,18.9,17.3,15.7,9.7,6,2.2],avg_temp:8.9,year:1982},{months:[4,-1.7,4.6,8.6,11.3,16.3,20.4,18.1,13.7,9.2,3.5,.7],avg_temp:9.05833333333333,year:1983},{months:[1.1,-.3,2,6.8,10.8,13.7,15.9,17,12.3,10.2,4.9,1.2],avg_temp:7.96666666666667,year:1984},{months:[-5.5,-3.1,2.8,7.6,13.4,13.5,17.4,16.2,13.5,8.8,.8,3.7],avg_temp:7.425,year:1985},{months:[.1,-6.4,3,6.3,14.1,15.9,17,16.3,11.3,9.6,5.9,2.1],avg_temp:7.93333333333333,year:1986},{months:[-5.9,-.3,-.4,9.1,9.7,13.9,16.9,15.5,14.5,9.4,4.9,2.1],avg_temp:7.45,year:1987},{months:[3.5,2.1,2.7,8,14.2,15,17,17,13.2,9.7,3,3.4],avg_temp:9.06666666666667,year:1988},{months:[2.5,3.4,7,7.2,13.8,15.3,17.7,17,14.4,10.4,2.7,2.4],avg_temp:9.48333333333333,year:1989},{months:[2.5,5.7,6.9,7.4,13.9,15.2,16.7,18.3,11.8,10.2,4.5,.8],avg_temp:9.49166666666667,year:1990},{months:[1.5,-2.4,6.4,7.1,9.5,13.5,19.2,17.9,14.8,8.2,4,.7],avg_temp:8.36666666666667,year:1991},{months:[1,2.8,4.8,7.8,14.5,17.3,18.6,19.1,13.4,6.5,5.4,1.3],avg_temp:9.375,year:1992},{months:[2.5,-.7,3.6,10.4,14.6,15.7,16.1,15.8,12.2,7.9,.4,3.2],avg_temp:8.475,year:1993},{months:[3,-.2,6.3,7.9,12.6,15.9,21.3,17.8,13.2,7.6,7.2,3.6],avg_temp:9.68333333333333,year:1994},{months:[.2,4.6,3.1,8.5,12.2,14.3,20.1,18.3,12.6,11.8,3,-1.8],avg_temp:8.90833333333333,year:1995},{months:[-2.8,-2.2,1,8.4,11.2,15.7,15.9,17.2,10.9,9.2,4.5,-2.4],avg_temp:7.21666666666667,year:1996},{months:[-2.6,4.1,5.8,6.4,12.7,15.9,17.2,19.8,13.7,7.7,4,2.2],avg_temp:8.90833333333333,year:1997},{months:[2.4,4.3,5,8.9,14,16.5,16.4,16.7,13.4,8.7,1.6,1],avg_temp:9.075,year:1998},{months:[2.6,.4,5.4,8.9,13.8,15.2,19,17.2,16.8,9,3.5,2.2],avg_temp:9.5,year:1999},{months:[1.1,3.9,5.2,10.2,14.6,17,15.3,17.6,13.9,10.6,6.1,3.1],avg_temp:9.88333333333333,year:2e3},{months:[.9,2.3,4.2,7.1,14.4,14.3,18.6,18.6,11.8,12.5,3.8,-.2],avg_temp:9.025,year:2001},{months:[1.2,5.1,5.4,8.1,13.8,17.4,17.7,18.8,13.2,8.3,5.6,.3],avg_temp:9.575,year:2002},{months:[-.3,-1.9,5.3,8.5,14.1,19.4,19.1,20.6,13.9,5.9,6,1.8],avg_temp:9.36666666666667,year:2003},{months:[-.1,2.4,4.1,9.4,11.6,15.3,16.8,18.4,14,10.1,4.2,1.1],avg_temp:8.94166666666667,year:2004},{months:[2,-1,3.6,9.3,12.8,16.4,18,15.8,15,11,4.2,.9],avg_temp:9,year:2005},{months:[-2.6,-.4,1.5,8,13.1,16.8,22,15.5,16.9,12.1,7,4.4],avg_temp:9.525,year:2006},{months:[4.8,3.9,6.2,11.5,14.2,17.4,17.2,16.9,12.6,8.4,3.7,1.6],avg_temp:9.86666666666667,year:2007},{months:[3.7,3.7,4.2,7.6,14.5,16.9,18,17.4,12.4,9.1,5.1,1.1],avg_temp:9.475,year:2008},{months:[-2.2,.5,4.3,11.8,13.6,14.8,18,18.7,14.7,8.2,7.4,.3],avg_temp:9.175,year:2009},{months:[-3.7,-.5,4.2,8.7,10.4,16.3,20.3,16.7,12.4,8.1,4.8,-3.7],avg_temp:7.83333333333333,year:2010},{months:[1,.9,4.9,11.6,13.9,16.5,16.1,17.7,15.2,9.4,4.5,3.9],avg_temp:9.63333333333333,year:2011},{months:[1.9,-2.5,6.9,8.2,14.2,15.5,17.4,18.4,13.6,8.7,5.2,1.5],avg_temp:9.08333333333333,year:2012},{months:[.2,-.7,.1,8.1,11.8,15.7,19.5,17.9,13.3,10.6,4.6,3.6],avg_temp:8.725,year:2013},{months:[2.1,4.3,6.9,10.8,12.4,16.1,19.3,16,14.9,11.9,6.5,2.7],avg_temp:10.325,year:2014},{months:[2.2,.7,5.2,8.4,12.3,15.8,19.4,19.9,13,8.4,7.5,6.5],avg_temp:9.94166666666667,year:2015},{months:[1,3.3,4,7.9,13.7,17,18.6,17.7,16.9,8.5,3.8,2.2],avg_temp:9.55,year:2016},{months:[-2.2,2.9,7.2,7.4,14.1,17.8,18.1,17.9,12.8,11.1,5.1,2.7],avg_temp:9.575,year:2017},{months:[3.7,-1.9,2.4,12.3,16,17.7,20.3],avg_temp:null,year:2018}]}} This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,17 @@ <!DOCTYPE html> <meta charset='utf-8'> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="stylesheet" href="style.css"> <script src='https://unpkg.com/[email protected]/dist/simple-statistics.min.js' /> <script> console.log('hi') </script> <div id='graph'></div> <script src='data.js'></script> <script src='d3_.js'></script> <script src='_script.js'></script> LoadingSorry, something went wrong. Reload?Sorry, we cannot display this file.Sorry, this file is invalid so it cannot be displayed.This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,67 @@ body{ font-family: monaco, Consolas, 'Lucida Console', monospace; margin: 0px; } .tooltip { top: -1000px; position: fixed; padding: 10px; background: rgba(255, 255, 255, .90); border: 1px solid lightgray; pointer-events: none; } .tooltip-hidden{ opacity: 0; transition: all .3s; transition-delay: .1s; } @media (max-width: 590px){ div.tooltip{ bottom: -1px; width: calc(100%); left: -1px !important; right: -1px !important; top: auto !important; width: auto !important; } } svg{ overflow: visible; } .domain{ display: none; } text{ /*pointer-events: none;*/ /*text-shadow: 0 1px 0 #fff, 1px 0 0 #fff, 0 -1px 0 #fff, -1px 0 0 #fff;*/ } .axis{ opacity: .4; } .y line{ stroke: #ccc; } .x line{ opacity: 0; } .x{ opacity: 1; } .x text{ font-size: 14px } circle.active{ stroke-opacity: .5; }