-
-
Save grosa1/859465c2e5ee64466de9b86a5117665c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from datetime import datetime | |
| from elasticsearch import Elasticsearch | |
| from elasticsearch import helpers | |
| import pandas | |
| csv_file = pandas.DataFrame(pandas.read_csv("Dati-meteo_Lugano.csv", sep = ",", header = 0, index_col = False)) | |
| csv_file.rename(columns={'Data e ora':'@timestamp', | |
| 'Temp. [°C]':'temp_celcius', | |
| 'Prec. [mm]':'precipitation_mm', | |
| 'Data':'date', | |
| 'Ora':'time'}, | |
| inplace=True) | |
| print(csv_file) | |
| data_string = csv_file.to_json(orient = "records", date_format = "epoch", double_precision = 10, force_ascii = True, date_unit = "ms", default_handler = None) | |
| data_json = eval(data_string) | |
| print(data_json[0]) | |
| actions= [] | |
| for num, json_doc in enumerate(data_json): | |
| actions.append({"_id": num + 1, "_index": "meteo", "_source": json_doc}) | |
| print(actions[0]) | |
| METEO_MAPPING = { | |
| "mappings" : { | |
| "properties" : { | |
| "@timestamp" : { | |
| "type" : "date", | |
| "format": "dd.MM.yyyy HH:mm" | |
| }, | |
| "date" : { | |
| "type" : "date", | |
| "format": "dd.MM.yyyy" | |
| }, | |
| "precipitation_mm" : { | |
| "type" : "float" | |
| }, | |
| "temp_celcius" : { | |
| "type" : "float" | |
| }, | |
| "time" : { | |
| "type" : "keyword" | |
| } | |
| } | |
| } | |
| } | |
| es.indices.delete(index='meteo', ignore=404) | |
| es.indices.create( | |
| index="meteo", | |
| body=METEO_MAPPING | |
| ) | |
| es = Elasticsearch() | |
| helpers.bulk(es, actions) | |
| csv_file = pandas.DataFrame(pandas.read_csv("stations.csv", sep = ",", header = 0, index_col = False)) | |
| csv_file.rename(columns={'latitude':'lat', 'longitude':'lon'}, inplace=True) | |
| print(csv_file) | |
| data_string = csv_file.to_json(orient = "records", date_format = "epoch", double_precision = 10, force_ascii = True, date_unit = "ms", default_handler = None) | |
| data_json = eval(data_string) | |
| print(data_json[0]) | |
| actions= [] | |
| for json_doc in data_json: | |
| actions.append({"_id": json_doc["id"], "_index": "stations", "_source": {"name": json_doc["name"], "address": json_doc["address"], "zip": json_doc["zip"], "city": json_doc["city"], "location": { "lat": json_doc["lat"], "lon": json_doc["lon"]}}}) | |
| print(actions[0]) | |
| STATIONS_MAPPING = { | |
| "mappings" : { | |
| "properties" : { | |
| "name" : { | |
| "type" : "keyword" | |
| }, | |
| "address" : { | |
| "type" : "text" | |
| }, | |
| "zip" : { | |
| "type" : "keyword" | |
| }, | |
| "city" : { | |
| "type" : "keyword" | |
| }, | |
| "location" : { | |
| "type" : "geo_point" | |
| } | |
| } | |
| } | |
| } | |
| es.indices.create( | |
| index="stations", | |
| body=STATIONS_MAPPING | |
| ) | |
| es = Elasticsearch() | |
| helpers.bulk(es, actions) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment