Skip to content

Instantly share code, notes, and snippets.

@hieuphung97
Created October 30, 2020 07:34
Show Gist options
  • Select an option

  • Save hieuphung97/353d9f990b89a9c08da9190a24d02317 to your computer and use it in GitHub Desktop.

Select an option

Save hieuphung97/353d9f990b89a9c08da9190a24d02317 to your computer and use it in GitHub Desktop.

Revisions

  1. hieuphung97 created this gist Oct 30, 2020.
    158 changes: 158 additions & 0 deletions Focal Loss
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,158 @@
    # Source: https://github.com/kornia/kornia/blob/master/kornia/losses/focal.py
    from typing import Optional

    import torch
    import torch.nn as nn
    import torch.nn.functional as F


    def one_hot(labels: torch.Tensor,
    num_classes: int,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    eps: Optional[float] = 1e-6) -> torch.Tensor:
    r"""Converts an integer label x-D tensor to a one-hot (x+1)-D tensor.
    Args:
    labels (torch.Tensor) : tensor with labels of shape :math:`(N, *)`,
    where N is batch size. Each value is an integer
    representing correct classification.
    num_classes (int): number of classes in labels.
    device (Optional[torch.device]): the desired device of returned tensor.
    Default: if None, uses the current device for the default tensor type
    (see torch.set_default_tensor_type()). device will be the CPU for CPU
    tensor types and the current CUDA device for CUDA tensor types.
    dtype (Optional[torch.dtype]): the desired data type of returned
    tensor. Default: if None, infers data type from values.
    Returns:
    torch.Tensor: the labels in one hot tensor of shape :math:`(N, C, *)`,
    Examples::
    >>> labels = torch.LongTensor([[[0, 1], [2, 0]]])
    >>> kornia.losses.one_hot(labels, num_classes=3)
    tensor([[[[1., 0.],
    [0., 1.]],
    [[0., 1.],
    [0., 0.]],
    [[0., 0.],
    [1., 0.]]]]
    """
    if not torch.is_tensor(labels):
    raise TypeError("Input labels type is not a torch.Tensor. Got {}"
    .format(type(labels)))
    if not labels.dtype == torch.int64:
    raise ValueError(
    "labels must be of the same dtype torch.int64. Got: {}" .format(
    labels.dtype))
    if num_classes < 1:
    raise ValueError("The number of classes must be bigger than one."
    " Got: {}".format(num_classes))
    shape = labels.shape
    one_hot = torch.zeros(shape[0], num_classes, *shape[1:],
    device=device, dtype=dtype)
    return one_hot.scatter_(1, labels.unsqueeze(1), 1.0) + eps


    # based on:
    # https://github.com/zhezh/focalloss/blob/master/focalloss.py

    def focal_loss(
    input: torch.Tensor,
    target: torch.Tensor,
    alpha: float,
    gamma: float = 2.0,
    reduction: str = 'none',
    eps: float = 1e-8) -> torch.Tensor:
    r"""Function that computes Focal loss.
    See :class:`~kornia.losses.FocalLoss` for details.
    """
    if not torch.is_tensor(input):
    raise TypeError("Input type is not a torch.Tensor. Got {}"
    .format(type(input)))

    if not len(input.shape) >= 2:
    raise ValueError("Invalid input shape, we expect BxCx*. Got: {}"
    .format(input.shape))

    if input.size(0) != target.size(0):
    raise ValueError('Expected input batch_size ({}) to match target batch_size ({}).'
    .format(input.size(0), target.size(0)))

    n = input.size(0)
    out_size = (n,) + input.size()[2:]
    if target.size()[1:] != input.size()[2:]:
    raise ValueError('Expected target size {}, got {}'.format(
    out_size, target.size()))

    if not input.device == target.device:
    raise ValueError(
    "input and target must be in the same device. Got: {} and {}" .format(
    input.device, target.device))

    # compute softmax over the classes axis
    input_soft: torch.Tensor = F.softmax(input, dim=1) + eps

    # create the labels one hot tensor
    target_one_hot: torch.Tensor = one_hot(
    target, num_classes=input.shape[1],
    device=input.device, dtype=input.dtype)

    # compute the actual focal loss
    weight = torch.pow(-input_soft + 1., gamma)

    focal = -alpha * weight * torch.log(input_soft)
    loss_tmp = torch.sum(target_one_hot * focal, dim=1)

    if reduction == 'none':
    loss = loss_tmp
    elif reduction == 'mean':
    loss = torch.mean(loss_tmp)
    elif reduction == 'sum':
    loss = torch.sum(loss_tmp)
    else:
    raise NotImplementedError("Invalid reduction mode: {}"
    .format(reduction))
    return loss


    class FocalLoss(nn.Module):
    r"""Criterion that computes Focal loss.
    According to [1], the Focal loss is computed as follows:
    .. math::
    \text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)
    where:
    - :math:`p_t` is the model's estimated probability for each class.
    Arguments:
    alpha (float): Weighting factor :math:`\alpha \in [0, 1]`.
    gamma (float): Focusing parameter :math:`\gamma >= 0`.
    reduction (str, optional): Specifies the reduction to apply to the
    output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied,
    ‘mean’: the sum of the output will be divided by the number of elements
    in the output, ‘sum’: the output will be summed. Default: ‘none’.
    Shape:
    - Input: :math:`(N, C, *)` where C = number of classes.
    - Target: :math:`(N, *)` where each value is
    :math:`0 ≤ targets[i] ≤ C−1`.
    Examples:
    >>> N = 5 # num_classes
    >>> kwargs = {"alpha": 0.5, "gamma": 2.0, "reduction": 'mean'}
    >>> loss = kornia.losses.FocalLoss(**kwargs)
    >>> input = torch.randn(1, N, 3, 5, requires_grad=True)
    >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N)
    >>> output = loss(input, target)
    >>> output.backward()
    References:
    [1] https://arxiv.org/abs/1708.02002
    """

    def __init__(self, alpha: float, gamma: float = 2.0,
    reduction: str = 'none') -> None:
    super(FocalLoss, self).__init__()
    self.alpha: float = alpha
    self.gamma: float = gamma
    self.reduction: str = reduction
    self.eps: float = 1e-6

    def forward( # type: ignore
    self,
    input: torch.Tensor,
    target: torch.Tensor) -> torch.Tensor:
    return focal_loss(input, target, self.alpha, self.gamma, self.reduction, self.eps)