|
|
@@ -0,0 +1,123 @@ |
|
|
""" |
|
|
draws many samples from a diffusion model by slerp'ing around |
|
|
the noise space, and dumps frames to a directory. You can then |
|
|
stitch up the frames with e.g.: |
|
|
|
|
|
$ ffmpeg -r 10 -f image2 -s 512x512 -i out/frame%04d.jpg -vcodec libx264 -crf 10 -pix_fmt yuv420p test.mp4 |
|
|
|
|
|
THIS FILE IS HACKY AND NOT CONFIGURABLE READ THE CODE, MAKE EDITS TO PATHS AND SETTINGS YOU LIKE |
|
|
THIS FILE IS HACKY AND NOT CONFIGURABLE READ THE CODE, MAKE EDITS TO PATHS AND SETTINGS YOU LIKE |
|
|
THIS FILE IS HACKY AND NOT CONFIGURABLE READ THE CODE, MAKE EDITS TO PATHS AND SETTINGS YOU LIKE |
|
|
|
|
|
nice slerp def from @xsteenbrugge ty |
|
|
""" |
|
|
|
|
|
from diffusers import StableDiffusionPipeline |
|
|
from time import time |
|
|
from PIL import Image |
|
|
from einops import rearrange |
|
|
import numpy as np |
|
|
import torch |
|
|
from torch import autocast |
|
|
from torchvision.utils import make_grid |
|
|
|
|
|
torch.manual_seed(42) |
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("/home/ubuntu/stable-diffusion-v1-3-diffusers", use_auth_token=True) |
|
|
|
|
|
torch_device = 'cuda:3' |
|
|
pipe.unet.to(torch_device) |
|
|
pipe.vae.to(torch_device) |
|
|
pipe.text_encoder.to(torch_device) |
|
|
print('w00t') |
|
|
|
|
|
batch_size = 1 |
|
|
height = 512 |
|
|
width = 512 |
|
|
|
|
|
prompt = ["ultrarealistic steam punk neural network machine in the shape of a brain, placed on a pedestal, covered with neurons made of gears. dramatic lighting. #unrealengine"] * 1 |
|
|
text_input = pipe.tokenizer(prompt, padding=True, truncation=True, return_tensors="pt") |
|
|
text_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0] |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def diffuse(text_embeddings, init, guidance_scale = 7.5): |
|
|
# text_embeddings are n,t,d |
|
|
|
|
|
max_length = text_embeddings.shape[1] |
|
|
uncond_input = pipe.tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt") |
|
|
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] |
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
latents = init.clone() |
|
|
|
|
|
num_inference_steps = 50 |
|
|
pipe.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
for t in pipe.scheduler.timesteps: |
|
|
|
|
|
# predict the noise residual |
|
|
latent_model_input = torch.cat([latents] * 2) # for cfg |
|
|
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] |
|
|
|
|
|
# perform guidance |
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1 |
|
|
latents = pipe.scheduler.step(noise_pred, t, latents)["prev_sample"] |
|
|
|
|
|
# post-process |
|
|
latents = 1 / 0.18215 * latents |
|
|
image = pipe.vae.decode(latents) |
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
|
|
return image |
|
|
|
|
|
|
|
|
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): |
|
|
|
|
|
if not isinstance(v0, np.ndarray): |
|
|
inputs_are_torch = True |
|
|
input_device = v0.device |
|
|
v0 = v0.cpu().numpy() |
|
|
v1 = v1.cpu().numpy() |
|
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) |
|
|
if np.abs(dot) > DOT_THRESHOLD: |
|
|
v2 = (1 - t) * v0 + t * v1 |
|
|
else: |
|
|
theta_0 = np.arccos(dot) |
|
|
sin_theta_0 = np.sin(theta_0) |
|
|
theta_t = theta_0 * t |
|
|
sin_theta_t = np.sin(theta_t) |
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 |
|
|
s1 = sin_theta_t / sin_theta_0 |
|
|
v2 = s0 * v0 + s1 * v1 |
|
|
|
|
|
if inputs_are_torch: |
|
|
v2 = torch.from_numpy(v2).to(input_device) |
|
|
|
|
|
return v2 |
|
|
|
|
|
# DREAM |
|
|
|
|
|
# sample start |
|
|
init1 = torch.randn((batch_size, pipe.unet.in_channels, height // 8, width // 8)).to(torch_device) |
|
|
n = 0 |
|
|
while True: |
|
|
|
|
|
# sample destination |
|
|
init2 = torch.randn((batch_size, pipe.unet.in_channels, height // 8, width // 8)).to(torch_device) |
|
|
|
|
|
for i, t in enumerate(np.linspace(0, 1, 200)): |
|
|
init = slerp(float(t), init1, init2) |
|
|
image = diffuse(text_embeddings, init, guidance_scale=10.0) |
|
|
im = Image.fromarray((image[0] * 255).astype(np.uint8)) |
|
|
im.save('/home/ubuntu/out/frame%04d.jpg' % n) |
|
|
print('dreaming... ', n) |
|
|
n += 1 |
|
|
|
|
|
init1 = init2 |
|
|
|