Created
December 8, 2021 00:51
-
-
Save hsleonis/c8b8ce3e9d5d7318b53bfe0dd2a36a82 to your computer and use it in GitHub Desktop.
Revisions
-
hsleonis created this gist
Dec 8, 2021 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,56 @@ # -*- coding: utf-8 -*- """ LeNet - Deep Learning Neural Network """ import tensorflow as tf import numpy as np from tensorflow.keras.layers import Conv2D, AveragePooling2D, Dense, Flatten from tensorflow.keras.models import Sequential from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt # Load the MNIST dataset using the Keras library: (x_train , y_train), (x_test, y_test) = mnist.load_data() # Split dataset into training and testing, padding and normalizing images: x_train = np.pad(x_train,((0,0),(2,2),(2,2))) # padding x_test = np.pad(x_test,((0,0),(2,2),(2,2))) x_train = x_train/255.0 # Normalizing the values x_test = x_test/255.0 y_train = to_categorical(y_train,10) # converting labels into one-hot-encoded vectors y_test = to_categorical(y_test,10) # Explore Dataset: plt.imshow(x_train[0], cmap='gray') plt.show() # Expand dimensions of dataset, because LeNet expects images of size 32x32x1 instead of 32x32: x_train = np.expand_dims(x_train, 3) x_test = np.expand_dims(x_test, 3) # LeNet Model: lenet = Sequential(name="LeNet-5") lenet.add(Conv2D(6,(5,5),strides=(1,1), activation='tanh', input_shape=(32,32,1), name='C1')) # C1 lenet.add(AveragePooling2D(name='S2')) # S2 lenet.add(Conv2D(16,(5,5),strides=(1,1), activation='tanh', name='C3')) # C3 lenet.add(AveragePooling2D(name='S4')) # S4 lenet.add(Flatten()) lenet.add(Dense(120,activation='tanh', name='FC5')) # FC5 lenet.add(Dense(84,activation='tanh', name='FC6')) # FC6 lenet.add(Dense(10,activation='softmax', name='Output')) # FC7 # Compile model: lenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Model preview: lenet.summary() # Train model: lenet.fit(x_train, y_train, epochs=10, batch_size=32) # Evaluate model's performance by passing the test dataset: _, acc = lenet.evaluate(x_test, y_test) """We aquire 98.58% accuracy."""