Created
August 16, 2021 14:35
-
-
Save jimexist/f2c489fb19cd08a3a0908a0adb4d5efb to your computer and use it in GitHub Desktop.
Revisions
-
jimexist created this gist
Aug 16, 2021 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,130 @@ { "cells": [ { "cell_type": "code", "execution_count": 1, "id": "c1333286", "metadata": {}, "outputs": [], "source": [ "import torch\n", "from torch import nn" ] }, { "cell_type": "code", "execution_count": 2, "id": "4bd8e564", "metadata": {}, "outputs": [], "source": [ "input_size = 5\n", "hidden_size = 8\n", "cell = nn.LSTMCell(input_size=input_size, hidden_size=hidden_size)" ] }, { "cell_type": "code", "execution_count": 3, "id": "e4c9ff01", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[-1.4978, -1.0567, -1.9804, -0.0280, 0.4982],\n", " [ 0.0765, -0.7857, 0.6896, -0.8095, -0.2884],\n", " [-0.4736, 1.1645, -0.3312, 0.5085, 1.2523]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_tensor = torch.randn(3, input_size)\n", "input_tensor" ] }, { "cell_type": "code", "execution_count": 4, "id": "d3ad7340", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[-0.0045, 0.2381, -0.0528, -0.0542, 0.1259, -0.1155, -0.0484, 0.0413],\n", " [-0.0841, 0.0597, 0.0675, -0.1352, -0.0363, -0.0520, 0.0694, -0.0789],\n", " [ 0.0259, 0.1760, -0.1397, -0.0058, 0.0424, -0.1639, -0.0007, -0.0492]],\n", " grad_fn=<MulBackward0>),\n", " tensor([[-0.0072, 0.3069, -0.1259, -0.2533, 0.2088, -0.1996, -0.1047, 0.0992],\n", " [-0.1583, 0.0992, 0.1276, -0.2523, -0.0539, -0.0919, 0.1993, -0.1501],\n", " [ 0.0423, 0.3415, -0.2315, -0.0178, 0.0849, -0.3342, -0.0022, -0.1224]],\n", " grad_fn=<AddBackward0>))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output_tensor, state = cell(input_tensor)\n", "output_tensor, state" ] }, { "cell_type": "code", "execution_count": 5, "id": "b7b5e77f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(torch.Size([3, 8]), torch.Size([3, 8]))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output_tensor.shape, state.shape" ] }, { "cell_type": "code", "execution_count": null, "id": "7bd296a8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.11" } }, "nbformat": 4, "nbformat_minor": 5 }