Skip to content

Instantly share code, notes, and snippets.

@jw0201
Last active January 13, 2017 07:08
Show Gist options
  • Select an option

  • Save jw0201/2d84f917729e85814fdfb0e1f3748f2f to your computer and use it in GitHub Desktop.

Select an option

Save jw0201/2d84f917729e85814fdfb0e1f3748f2f to your computer and use it in GitHub Desktop.
import tensorflow as tf
x_data = [1., 2., 3.]
y_data = [1., 2., 3.]
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
hypothesis = W * X + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
a = tf.Variable(0.1)
optimizer = tf.train.GradientDescentOptimizer(a)
train = optimizer.minimize(cost)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in xrange(2001):
sess.run(train, feed_dict={X:x_data, Y:y_data})
if step % 20 == 0:
print step, sess.run(cost, feed_dict={X:x_data, Y:y_data}), sess.run(W), sess.run(b)
print sess.run(hypothesis, feed_dict={X:5})
print sess.run(hypothesis, feed_dict={X:2.5})
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment