Last active
November 6, 2021 17:55
-
-
Save kennyalive/c3cc15e2208fdca8a72b9fce4b9874a8 to your computer and use it in GitHub Desktop.
watertight triangle intersection with ray origin adjustment
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| constexpr bool perform_expensive_numerical_analysis_to_prevent_intersection_behind_ray_origin = true; // could noticeable slowdown algorithm (like 2x) | |
| // | |
| // Sven Woop, Carsten Benthin, and Ingo Wald, Watertight Ray/Triangle Intersection, | |
| // Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 1, 65-82, 2013 | |
| // http://jcgt.org/published/0002/01/05/ | |
| // | |
| float intersect_triangle_watertight(const Ray& ray, const Vector3& p0, const Vector3& p1, const Vector3& p2, Vector3* barycentrics) | |
| { | |
| const int kz = ray.direction.abs().max_dimension(); | |
| const int kx = (kz == 2 ? 0 : kz + 1); | |
| const int ky = (kz == 0 ? 2 : kz - 1); | |
| Vector3 direction = ray.direction.permutation(kx, ky, kz); | |
| float sx = -direction.x / direction.z; | |
| float sy = -direction.y / direction.z; | |
| float sz = 1.f / direction.z; | |
| const Vector3 p0t = (p0 - ray.origin).permutation(kx, ky, kz); | |
| const Vector3 p1t = (p1 - ray.origin).permutation(kx, ky, kz); | |
| const Vector3 p2t = (p2 - ray.origin).permutation(kx, ky, kz); | |
| float x0 = p0t.x + sx * p0t.z; | |
| float y0 = p0t.y + sy * p0t.z; | |
| float x1 = p1t.x + sx * p1t.z; | |
| float y1 = p1t.y + sy * p1t.z; | |
| float x2 = p2t.x + sx * p2t.z; | |
| float y2 = p2t.y + sy * p2t.z; | |
| float e0 = x1*y2 - y1*x2; | |
| float e1 = x2*y0 - y2*x0; | |
| float e2 = x0*y1 - y0*x1; | |
| if (e0 == 0.f || e1 == 0.f || e2 == 0.f) { | |
| e0 = float(double(x1)*double(y2) - double(y1)*double(x2)); | |
| e1 = float(double(x2)*double(y0) - double(y2)*double(x0)); | |
| e2 = float(double(x0)*double(y1) - double(y0)*double(x1)); | |
| } | |
| if ((e0 < 0 || e1 < 0 || e2 < 0) && (e0 > 0 || e1 > 0 || e2 > 0)) | |
| return Infinity; | |
| float det = e0 + e1 + e2; | |
| if (det == 0.f) | |
| return Infinity; | |
| float z0 = sz * p0t.z; | |
| float z1 = sz * p1t.z; | |
| float z2 = sz * p2t.z; | |
| float t_scaled = e0*z0 + e1*z1 + e2*z2; | |
| // This following code is more efficient version of this snippet: | |
| // if (det < 0 && t_scaled > 0 || det > 0 && t_scaled < 0) return Infinity; | |
| // MSVC compiler generates 2 x64 instructions: xor, jl. | |
| // Benchmark consistenly shows 1 cycle gain :) | |
| // TODO: replace memcpy with std::bit_cast if no surprises in generated code | |
| { | |
| uint32_t det_bits; | |
| memcpy(&det_bits, &det, 4); | |
| uint32_t t_scaled_bits; | |
| memcpy(&t_scaled_bits, &t_scaled, 4); | |
| if ((det_bits ^ t_scaled_bits) >> 31) | |
| return Infinity; | |
| } | |
| float inv_det = 1.f / det; | |
| float t = inv_det * t_scaled; | |
| ASSERT(t >= 0); | |
| if constexpr(perform_expensive_numerical_analysis_to_prevent_intersection_behind_ray_origin) | |
| { | |
| float max_xt = Vector3(p0t.x, p1t.x, p2t.x).abs().max_component(); | |
| float max_yt = Vector3(p0t.y, p1t.y, p2t.y).abs().max_component(); | |
| float max_zt = Vector3(p0t.z, p1t.z, p2t.z).abs().max_component(); | |
| float max_x = Vector3(x0, x1, x2).abs().max_component(); | |
| float max_y = Vector3(y0, y1, y2).abs().max_component(); | |
| float max_z = Vector3(z0, z1, z2).abs().max_component(); | |
| float max_e = Vector3(e0, e1, e2).abs().max_component(); | |
| float delta_x = gamma(4) * (max_xt + max_zt); | |
| float delta_y = gamma(4) * (max_yt + max_zt); | |
| float delta_z = gamma(3) * max_z; | |
| float delta_xy = gamma(1)*max_x*max_y + delta_x*max_y + delta_y*max_x; | |
| float delta_e = 2*delta_xy + gamma(1)*max_e; | |
| float delta_ez = gamma(1)*max_e*max_z + delta_z*max_e + delta_e*max_z; | |
| float delta_t = (3*delta_ez + gamma(2)*std::abs(t_scaled)) * std::abs(inv_det); | |
| if (delta_t >= t) | |
| return Infinity; | |
| } | |
| barycentrics->x = e0 * inv_det; | |
| barycentrics->y = e1 * inv_det; | |
| barycentrics->z = e2 * inv_det; | |
| return t; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment