How to train your own object detection models using the TensorFlow Object Detection API (2020 Update)
This started as a summary of this nice tutorial, but has since then become its own thing.
| SELECT table, | |
| formatReadableSize(sum(bytes)) as size, | |
| min(min_date) as min_date, | |
| max(max_date) as max_date | |
| FROM system.parts | |
| WHERE active | |
| GROUP BY table |
This started as a summary of this nice tutorial, but has since then become its own thing.
| '''This script goes along the blog post | |
| "Building powerful image classification models using very little data" | |
| from blog.keras.io. | |
| It uses data that can be downloaded at: | |
| https://www.kaggle.com/c/dogs-vs-cats/data | |
| In our setup, we: | |
| - created a data/ folder | |
| - created train/ and validation/ subfolders inside data/ | |
| - created cats/ and dogs/ subfolders inside train/ and validation/ | |
| - put the cat pictures index 0-999 in data/train/cats |
| '''This script goes along the blog post | |
| "Building powerful image classification models using very little data" | |
| from blog.keras.io. | |
| It uses data that can be downloaded at: | |
| https://www.kaggle.com/c/dogs-vs-cats/data | |
| In our setup, we: | |
| - created a data/ folder | |
| - created train/ and validation/ subfolders inside data/ | |
| - created cats/ and dogs/ subfolders inside train/ and validation/ | |
| - put the cat pictures index 0-999 in data/train/cats |
| [General] | |
| #我的注释都是 # 开头,所以如果你用 vim,直接 :g/^#/d 就可以一次性清除所有注释 | |
| #开头这段skip包含以下几个目的:1,私网IP跳过,提高内网性能;2,苹果的一些服务跳过,比如公共热点wifi要先测试captive.apple.com。可解决很多内网的 TCP毛病,例如 kodi remote软件无法遥控 | |
| skip-proxy = 10.0.0.0/8,169.254/16,172.16.0.0/12,192.168.0.0/16,224.0.0.0/4, localhost, *.local,api.smoot.apple.com,configuration.apple.com,xp.apple.com,smp-device-content.apple.com,guzzoni.apple.com,captive.apple.com,*.ess.apple.com,*.push.apple.com,*.push-apple.com.akadns.net | |
| #下面这一段则是完全跳过 Surge,最重要的一个是让 UDP包可以传输,解决很多内网毛病,例如DLNA,NFS或者btsync等组播类/UDP类应用 | |
| bypass-tun = 10.0.0.0/8, 169.254.0.0/16, 172.16.0.0/12, 192.168.0.0/16, 224.0.0.0/4, 0.0.0.0/8, 1.0.0.0/9, 1.160.0.0/11, 1.192.0.0/11, 10.0.0.0/8, 14.0.0.0/11, 14.96.0.0/11, 14.128.0.0/11, 14.192.0.0/11, 27.0.0.0/10, 27.96.0.0/11, 27.128.0.0/9, 36.0.0.0/10, 36.96.0.0/11, 36.128.0.0/9, 39.0.0.0/11, 39.64.0.0/10, 39.128.0.0/10, 42.0.0.0/8, 43.224.0.0/11, 45.64.0.0/10, 47.64.0.0/10, 49.0.0.0/9, 49.128.0.0/11, 49.192.0.0/10, 54.192.0.0/11, 58.0.0.0/9, 58.128.0.0/11, 58.192.0.0/10, 59.32.0.0/11, 5 |
$ text-builder -index /path/to/index.txt
Or run $ sh build-all to build all your index files.本人不提供任何保证和技术支持,使用者自负风险。
There are no guarantees, no any support. Use it at your own risk.
https://code.google.com/p/namebench/
基于我自身浏览习惯+深圳电信线路的namebench测试,整合了以下公共DNS列表的测试结果:
个人结论是:无论使用国内还是国外的DNS,都在解析网站时受到相当的干扰,如果不是劫持和黑洞,就是纯粹的丢包超时。只有在用户端设好工具,所有海外DNS请求走加密通道,才可以杜绝触发黑洞和过滤。在用户端想办法过滤虚假的DNS结果也可行,但并不能真正解决超时的使用问题。
| import ( | |
| "crypto/md5" | |
| "encoding/hex" | |
| ) | |
| func GetMD5Hash(text string) string { | |
| hasher := md5.New() | |
| hasher.Write([]byte(text)) | |
| return hex.EncodeToString(hasher.Sum(nil)) | |
| } |
| digraph G { | |
| rankdir=LR | |
| splines=line | |
| nodesep=.05; | |
| node [label=""]; | |
| subgraph cluster_0 { | |
| color=white; |