Skip to content

Instantly share code, notes, and snippets.

@luckylu
Created May 19, 2023 23:37
Show Gist options
  • Select an option

  • Save luckylu/b79d68c7c2bd7dbf4de854fda6a89ab4 to your computer and use it in GitHub Desktop.

Select an option

Save luckylu/b79d68c7c2bd7dbf4de854fda6a89ab4 to your computer and use it in GitHub Desktop.

Revisions

  1. luckylu created this gist May 19, 2023.
    1,635 changes: 1,635 additions & 0 deletions aa.sol
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,1635 @@
    /**
    *Submitted for verification at Etherscan.io on 2022-12-07
    */

    // SPDX-License-Identifier: UNLICENSED
    pragma solidity 0.8.17;

    // OpenZeppelin Contracts (last updated v4.6.0) (utils/cryptography/MerkleProof.sol)

    /**
    * @dev These functions deal with verification of Merkle Tree proofs.
    *
    * The proofs can be generated using the JavaScript library
    * https://github.com/miguelmota/merkletreejs[merkletreejs].
    * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
    *
    * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
    *
    * WARNING: You should avoid using leaf values that are 64 bytes long prior to
    * hashing, or use a hash function other than keccak256 for hashing leaves.
    * This is because the concatenation of a sorted pair of internal nodes in
    * the merkle tree could be reinterpreted as a leaf value.
    */
    library MerkleProof {
    /**
    * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
    * defined by `root`. For this, a `proof` must be provided, containing
    * sibling hashes on the branch from the leaf to the root of the tree. Each
    * pair of leaves and each pair of pre-images are assumed to be sorted.
    */
    function verify(
    bytes32[] memory proof,
    bytes32 root,
    bytes32 leaf
    ) internal pure returns (bool) {
    return processProof(proof, leaf) == root;
    }

    /**
    * @dev Calldata version of {verify}
    *
    * _Available since v4.7._
    */
    function verifyCalldata(
    bytes32[] calldata proof,
    bytes32 root,
    bytes32 leaf
    ) internal pure returns (bool) {
    return processProofCalldata(proof, leaf) == root;
    }

    /**
    * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
    * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
    * hash matches the root of the tree. When processing the proof, the pairs
    * of leafs & pre-images are assumed to be sorted.
    *
    * _Available since v4.4._
    */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
    bytes32 computedHash = leaf;
    for (uint256 i = 0; i < proof.length; i++) {
    computedHash = _hashPair(computedHash, proof[i]);
    }
    return computedHash;
    }

    /**
    * @dev Calldata version of {processProof}
    *
    * _Available since v4.7._
    */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
    bytes32 computedHash = leaf;
    for (uint256 i = 0; i < proof.length; i++) {
    computedHash = _hashPair(computedHash, proof[i]);
    }
    return computedHash;
    }

    /**
    * @dev Returns true if the `leaves` can be proved to be a part of a Merkle tree defined by
    * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
    *
    * _Available since v4.7._
    */
    function multiProofVerify(
    bytes32[] calldata proof,
    bool[] calldata proofFlags,
    bytes32 root,
    bytes32[] calldata leaves
    ) internal pure returns (bool) {
    return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
    * @dev Returns the root of a tree reconstructed from `leaves` and the sibling nodes in `proof`,
    * consuming from one or the other at each step according to the instructions given by
    * `proofFlags`.
    *
    * _Available since v4.7._
    */
    function processMultiProof(
    bytes32[] calldata proof,
    bool[] calldata proofFlags,
    bytes32[] calldata leaves
    ) internal pure returns (bytes32 merkleRoot) {
    // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
    // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
    // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
    // the merkle tree.
    uint256 leavesLen = leaves.length;
    uint256 totalHashes = proofFlags.length;

    // Check proof validity.
    require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

    // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
    // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
    bytes32[] memory hashes = new bytes32[](totalHashes);
    uint256 leafPos = 0;
    uint256 hashPos = 0;
    uint256 proofPos = 0;
    // At each step, we compute the next hash using two values:
    // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
    // get the next hash.
    // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
    // `proof` array.
    for (uint256 i = 0; i < totalHashes; i++) {
    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
    bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
    hashes[i] = _hashPair(a, b);
    }

    if (totalHashes > 0) {
    return hashes[totalHashes - 1];
    } else if (leavesLen > 0) {
    return leaves[0];
    } else {
    return proof[0];
    }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
    return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
    /// @solidity memory-safe-assembly
    assembly {
    mstore(0x00, a)
    mstore(0x20, b)
    value := keccak256(0x00, 0x40)
    }
    }
    }

    // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)

    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

    /**
    * @dev Interface of the ERC20 standard as defined in the EIP.
    */
    interface IERC20 {
    /**
    * @dev Emitted when `value` tokens are moved from one account (`from`) to
    * another (`to`).
    *
    * Note that `value` may be zero.
    */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
    * @dev Emitted when the allowance of a `spender` for an `owner` is set by
    * a call to {approve}. `value` is the new allowance.
    */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
    * @dev Returns the amount of tokens in existence.
    */
    function totalSupply() external view returns (uint256);

    /**
    * @dev Returns the amount of tokens owned by `account`.
    */
    function balanceOf(address account) external view returns (uint256);

    /**
    * @dev Moves `amount` tokens from the caller's account to `to`.
    *
    * Returns a boolean value indicating whether the operation succeeded.
    *
    * Emits a {Transfer} event.
    */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
    * @dev Returns the remaining number of tokens that `spender` will be
    * allowed to spend on behalf of `owner` through {transferFrom}. This is
    * zero by default.
    *
    * This value changes when {approve} or {transferFrom} are called.
    */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
    * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    *
    * Returns a boolean value indicating whether the operation succeeded.
    *
    * IMPORTANT: Beware that changing an allowance with this method brings the risk
    * that someone may use both the old and the new allowance by unfortunate
    * transaction ordering. One possible solution to mitigate this race
    * condition is to first reduce the spender's allowance to 0 and set the
    * desired value afterwards:
    * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
    *
    * Emits an {Approval} event.
    */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
    * @dev Moves `amount` tokens from `from` to `to` using the
    * allowance mechanism. `amount` is then deducted from the caller's
    * allowance.
    *
    * Returns a boolean value indicating whether the operation succeeded.
    *
    * Emits a {Transfer} event.
    */
    function transferFrom(
    address from,
    address to,
    uint256 amount
    ) external returns (bool);
    }

    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

    /**
    * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
    * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
    *
    * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
    * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
    * need to send a transaction, and thus is not required to hold Ether at all.
    */
    interface IERC20Permit {
    /**
    * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
    * given ``owner``'s signed approval.
    *
    * IMPORTANT: The same issues {IERC20-approve} has related to transaction
    * ordering also apply here.
    *
    * Emits an {Approval} event.
    *
    * Requirements:
    *
    * - `spender` cannot be the zero address.
    * - `deadline` must be a timestamp in the future.
    * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
    * over the EIP712-formatted function arguments.
    * - the signature must use ``owner``'s current nonce (see {nonces}).
    *
    * For more information on the signature format, see the
    * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
    * section].
    */
    function permit(
    address owner,
    address spender,
    uint256 value,
    uint256 deadline,
    uint8 v,
    bytes32 r,
    bytes32 s
    ) external;

    /**
    * @dev Returns the current nonce for `owner`. This value must be
    * included whenever a signature is generated for {permit}.
    *
    * Every successful call to {permit} increases ``owner``'s nonce by one. This
    * prevents a signature from being used multiple times.
    */
    function nonces(address owner) external view returns (uint256);

    /**
    * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
    */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
    }

    // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)

    /**
    * @dev Collection of functions related to the address type
    */
    library Address {
    /**
    * @dev Returns true if `account` is a contract.
    *
    * [IMPORTANT]
    * ====
    * It is unsafe to assume that an address for which this function returns
    * false is an externally-owned account (EOA) and not a contract.
    *
    * Among others, `isContract` will return false for the following
    * types of addresses:
    *
    * - an externally-owned account
    * - a contract in construction
    * - an address where a contract will be created
    * - an address where a contract lived, but was destroyed
    * ====
    *
    * [IMPORTANT]
    * ====
    * You shouldn't rely on `isContract` to protect against flash loan attacks!
    *
    * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
    * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
    * constructor.
    * ====
    */
    function isContract(address account) internal view returns (bool) {
    // This method relies on extcodesize/address.code.length, which returns 0
    // for contracts in construction, since the code is only stored at the end
    // of the constructor execution.

    return account.code.length > 0;
    }

    /**
    * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
    * `recipient`, forwarding all available gas and reverting on errors.
    *
    * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
    * of certain opcodes, possibly making contracts go over the 2300 gas limit
    * imposed by `transfer`, making them unable to receive funds via
    * `transfer`. {sendValue} removes this limitation.
    *
    * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
    *
    * IMPORTANT: because control is transferred to `recipient`, care must be
    * taken to not create reentrancy vulnerabilities. Consider using
    * {ReentrancyGuard} or the
    * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
    */
    function sendValue(address payable recipient, uint256 amount) internal {
    require(address(this).balance >= amount, "Address: insufficient balance");

    (bool success, ) = recipient.call{value: amount}("");
    require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
    * @dev Performs a Solidity function call using a low level `call`. A
    * plain `call` is an unsafe replacement for a function call: use this
    * function instead.
    *
    * If `target` reverts with a revert reason, it is bubbled up by this
    * function (like regular Solidity function calls).
    *
    * Returns the raw returned data. To convert to the expected return value,
    * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
    *
    * Requirements:
    *
    * - `target` must be a contract.
    * - calling `target` with `data` must not revert.
    *
    * _Available since v3.1._
    */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
    return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
    * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
    * `errorMessage` as a fallback revert reason when `target` reverts.
    *
    * _Available since v3.1._
    */
    function functionCall(
    address target,
    bytes memory data,
    string memory errorMessage
    ) internal returns (bytes memory) {
    return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
    * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
    * but also transferring `value` wei to `target`.
    *
    * Requirements:
    *
    * - the calling contract must have an ETH balance of at least `value`.
    * - the called Solidity function must be `payable`.
    *
    * _Available since v3.1._
    */
    function functionCallWithValue(
    address target,
    bytes memory data,
    uint256 value
    ) internal returns (bytes memory) {
    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
    * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
    * with `errorMessage` as a fallback revert reason when `target` reverts.
    *
    * _Available since v3.1._
    */
    function functionCallWithValue(
    address target,
    bytes memory data,
    uint256 value,
    string memory errorMessage
    ) internal returns (bytes memory) {
    require(address(this).balance >= value, "Address: insufficient balance for call");
    require(isContract(target), "Address: call to non-contract");

    (bool success, bytes memory returndata) = target.call{value: value}(data);
    return verifyCallResult(success, returndata, errorMessage);
    }

    /**
    * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
    * but performing a static call.
    *
    * _Available since v3.3._
    */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
    return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
    * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
    * but performing a static call.
    *
    * _Available since v3.3._
    */
    function functionStaticCall(
    address target,
    bytes memory data,
    string memory errorMessage
    ) internal view returns (bytes memory) {
    require(isContract(target), "Address: static call to non-contract");

    (bool success, bytes memory returndata) = target.staticcall(data);
    return verifyCallResult(success, returndata, errorMessage);
    }

    /**
    * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
    * but performing a delegate call.
    *
    * _Available since v3.4._
    */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
    * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
    * but performing a delegate call.
    *
    * _Available since v3.4._
    */
    function functionDelegateCall(
    address target,
    bytes memory data,
    string memory errorMessage
    ) internal returns (bytes memory) {
    require(isContract(target), "Address: delegate call to non-contract");

    (bool success, bytes memory returndata) = target.delegatecall(data);
    return verifyCallResult(success, returndata, errorMessage);
    }

    /**
    * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
    * revert reason using the provided one.
    *
    * _Available since v4.3._
    */
    function verifyCallResult(
    bool success,
    bytes memory returndata,
    string memory errorMessage
    ) internal pure returns (bytes memory) {
    if (success) {
    return returndata;
    } else {
    // Look for revert reason and bubble it up if present
    if (returndata.length > 0) {
    // The easiest way to bubble the revert reason is using memory via assembly
    /// @solidity memory-safe-assembly
    assembly {
    let returndata_size := mload(returndata)
    revert(add(32, returndata), returndata_size)
    }
    } else {
    revert(errorMessage);
    }
    }
    }
    }

    /**
    * @title SafeERC20
    * @dev Wrappers around ERC20 operations that throw on failure (when the token
    * contract returns false). Tokens that return no value (and instead revert or
    * throw on failure) are also supported, non-reverting calls are assumed to be
    * successful.
    * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
    * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
    */
    library SafeERC20 {
    using Address for address;

    function safeTransfer(
    IERC20 token,
    address to,
    uint256 value
    ) internal {
    _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
    IERC20 token,
    address from,
    address to,
    uint256 value
    ) internal {
    _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
    * @dev Deprecated. This function has issues similar to the ones found in
    * {IERC20-approve}, and its usage is discouraged.
    *
    * Whenever possible, use {safeIncreaseAllowance} and
    * {safeDecreaseAllowance} instead.
    */
    function safeApprove(
    IERC20 token,
    address spender,
    uint256 value
    ) internal {
    // safeApprove should only be called when setting an initial allowance,
    // or when resetting it to zero. To increase and decrease it, use
    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
    require(
    (value == 0) || (token.allowance(address(this), spender) == 0),
    "SafeERC20: approve from non-zero to non-zero allowance"
    );
    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
    IERC20 token,
    address spender,
    uint256 value
    ) internal {
    uint256 newAllowance = token.allowance(address(this), spender) + value;
    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
    IERC20 token,
    address spender,
    uint256 value
    ) internal {
    unchecked {
    uint256 oldAllowance = token.allowance(address(this), spender);
    require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
    uint256 newAllowance = oldAllowance - value;
    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }
    }

    function safePermit(
    IERC20Permit token,
    address owner,
    address spender,
    uint256 value,
    uint256 deadline,
    uint8 v,
    bytes32 r,
    bytes32 s
    ) internal {
    uint256 nonceBefore = token.nonces(owner);
    token.permit(owner, spender, value, deadline, v, r, s);
    uint256 nonceAfter = token.nonces(owner);
    require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
    * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
    * on the return value: the return value is optional (but if data is returned, it must not be false).
    * @param token The token targeted by the call.
    * @param data The call data (encoded using abi.encode or one of its variants).
    */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
    // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
    // the target address contains contract code and also asserts for success in the low-level call.

    bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
    if (returndata.length > 0) {
    // Return data is optional
    require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }
    }
    }

    // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/Math.sol)

    /**
    * @dev Standard math utilities missing in the Solidity language.
    */
    library Math {
    enum Rounding {
    Down, // Toward negative infinity
    Up, // Toward infinity
    Zero // Toward zero
    }

    /**
    * @dev Returns the largest of two numbers.
    */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
    return a >= b ? a : b;
    }

    /**
    * @dev Returns the smallest of two numbers.
    */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
    return a < b ? a : b;
    }

    /**
    * @dev Returns the average of two numbers. The result is rounded towards
    * zero.
    */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
    // (a + b) / 2 can overflow.
    return (a & b) + (a ^ b) / 2;
    }

    /**
    * @dev Returns the ceiling of the division of two numbers.
    *
    * This differs from standard division with `/` in that it rounds up instead
    * of rounding down.
    */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
    // (a + b - 1) / b can overflow on addition, so we distribute.
    return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
    * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
    * with further edits by Uniswap Labs also under MIT license.
    */
    function mulDiv(
    uint256 x,
    uint256 y,
    uint256 denominator
    ) internal pure returns (uint256 result) {
    unchecked {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly {
    let mm := mulmod(x, y, not(0))
    prod0 := mul(x, y)
    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
    return prod0 / denominator;
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    require(denominator > prod1);

    ///////////////////////////////////////////////
    // 512 by 256 division.
    ///////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly {
    // Compute remainder using mulmod.
    remainder := mulmod(x, y, denominator)

    // Subtract 256 bit number from 512 bit number.
    prod1 := sub(prod1, gt(remainder, prod0))
    prod0 := sub(prod0, remainder)
    }

    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
    // See https://cs.stackexchange.com/q/138556/92363.

    // Does not overflow because the denominator cannot be zero at this stage in the function.
    uint256 twos = denominator & (~denominator + 1);
    assembly {
    // Divide denominator by twos.
    denominator := div(denominator, twos)

    // Divide [prod1 prod0] by twos.
    prod0 := div(prod0, twos)

    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
    twos := add(div(sub(0, twos), twos), 1)
    }

    // Shift in bits from prod1 into prod0.
    prod0 |= prod1 * twos;

    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
    // four bits. That is, denominator * inv = 1 mod 2^4.
    uint256 inverse = (3 * denominator) ^ 2;

    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
    // in modular arithmetic, doubling the correct bits in each step.
    inverse *= 2 - denominator * inverse; // inverse mod 2^8
    inverse *= 2 - denominator * inverse; // inverse mod 2^16
    inverse *= 2 - denominator * inverse; // inverse mod 2^32
    inverse *= 2 - denominator * inverse; // inverse mod 2^64
    inverse *= 2 - denominator * inverse; // inverse mod 2^128
    inverse *= 2 - denominator * inverse; // inverse mod 2^256

    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
    // is no longer required.
    result = prod0 * inverse;
    return result;
    }
    }

    /**
    * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
    */
    function mulDiv(
    uint256 x,
    uint256 y,
    uint256 denominator,
    Rounding rounding
    ) internal pure returns (uint256) {
    uint256 result = mulDiv(x, y, denominator);
    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
    result += 1;
    }
    return result;
    }

    /**
    * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
    *
    * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
    */
    function sqrt(uint256 a) internal pure returns (uint256) {
    if (a == 0) {
    return 0;
    }

    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
    // `msb(a) <= a < 2*msb(a)`.
    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
    uint256 result = 1;
    uint256 x = a;
    if (x >> 128 > 0) {
    x >>= 128;
    result <<= 64;
    }
    if (x >> 64 > 0) {
    x >>= 64;
    result <<= 32;
    }
    if (x >> 32 > 0) {
    x >>= 32;
    result <<= 16;
    }
    if (x >> 16 > 0) {
    x >>= 16;
    result <<= 8;
    }
    if (x >> 8 > 0) {
    x >>= 8;
    result <<= 4;
    }
    if (x >> 4 > 0) {
    x >>= 4;
    result <<= 2;
    }
    if (x >> 2 > 0) {
    result <<= 1;
    }

    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
    // into the expected uint128 result.
    unchecked {
    result = (result + a / result) >> 1;
    result = (result + a / result) >> 1;
    result = (result + a / result) >> 1;
    result = (result + a / result) >> 1;
    result = (result + a / result) >> 1;
    result = (result + a / result) >> 1;
    result = (result + a / result) >> 1;
    return min(result, a / result);
    }
    }

    /**
    * @notice Calculates sqrt(a), following the selected rounding direction.
    */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
    uint256 result = sqrt(a);
    if (rounding == Rounding.Up && result * result < a) {
    result += 1;
    }
    return result;
    }
    }

    // OpenZeppelin Contracts v4.4.1 (utils/structs/BitMaps.sol)

    /**
    * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
    * Largelly inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
    */
    library BitMaps {
    struct BitMap {
    mapping(uint256 => uint256) _data;
    }

    /**
    * @dev Returns whether the bit at `index` is set.
    */
    function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
    uint256 bucket = index >> 8;
    uint256 mask = 1 << (index & 0xff);
    return bitmap._data[bucket] & mask != 0;
    }

    /**
    * @dev Sets the bit at `index` to the boolean `value`.
    */
    function setTo(
    BitMap storage bitmap,
    uint256 index,
    bool value
    ) internal {
    if (value) {
    set(bitmap, index);
    } else {
    unset(bitmap, index);
    }
    }

    /**
    * @dev Sets the bit at `index`.
    */
    function set(BitMap storage bitmap, uint256 index) internal {
    uint256 bucket = index >> 8;
    uint256 mask = 1 << (index & 0xff);
    bitmap._data[bucket] |= mask;
    }

    /**
    * @dev Unsets the bit at `index`.
    */
    function unset(BitMap storage bitmap, uint256 index) internal {
    uint256 bucket = index >> 8;
    uint256 mask = 1 << (index & 0xff);
    bitmap._data[bucket] &= ~mask;
    }
    }

    contract Vesting {
    using BitMaps for BitMaps.BitMap;
    using SafeERC20 for IERC20;

    address public immutable token;
    bytes32 public immutable merkleRoot;
    uint256 public constant MAX_PERCENTAGE = 1e4;

    address public owner;

    mapping(uint256 => uint256) public claimed;
    BitMaps.BitMap private _revokedBitmap;

    error InvalidProof();
    error NothingToClaim();
    error InvalidDates();
    error EmptyMerkleRoot();
    error OnlyOwner();
    error AlreadyRevoked();
    error ZeroAddress();
    error CantRevokeEndedVesting();
    error UnrevocableVesting();
    error ClaimAmountGtClaimable();
    error Revoked();

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    event Claim(address indexed account, uint256 amount);
    event VestingRevoked(address indexed account, uint256 amountUnvested);

    constructor(
    address _token,
    bytes32 _merkleRoot,
    address _owner
    ) {
    if (_merkleRoot == "") revert EmptyMerkleRoot();

    token = _token;
    merkleRoot = _merkleRoot;

    owner = _owner;
    }

    modifier onlyOwner() {
    if (msg.sender != owner) revert OnlyOwner();
    _;
    }

    function claim(
    uint256 index,
    address account,
    uint256 amount,
    bool revocable,
    uint256 start,
    uint256 end,
    uint256 cadence,
    uint256 percentageOnStart,
    bytes32[] calldata merkleProof,
    uint256 claimAmount
    ) public {
    bytes32 node = keccak256(
    abi.encodePacked(index, account, amount, revocable, start, end, cadence, percentageOnStart)
    );
    if (!MerkleProof.verify(merkleProof, merkleRoot, node)) revert InvalidProof();

    if (getRevoked(index)) revert Revoked();

    uint256 claimable = getClaimable(index, amount, start, end, cadence, percentageOnStart);

    if (claimable == 0) revert NothingToClaim();
    if (claimAmount > claimable) revert ClaimAmountGtClaimable();

    claimed[index] += claimAmount;

    IERC20(token).safeTransfer(account, claimAmount);

    emit Claim(account, claimAmount);
    }

    function stopVesting(
    uint256 index,
    address account,
    uint256 amount,
    bool revocable,
    uint256 start,
    uint256 end,
    uint256 cadence,
    uint256 percentageOnStart,
    bytes32[] calldata merkleProof
    ) external onlyOwner {
    bytes32 node = keccak256(
    abi.encodePacked(index, account, amount, revocable, start, end, cadence, percentageOnStart)
    );
    if (!MerkleProof.verify(merkleProof, merkleRoot, node)) revert InvalidProof();

    if (!revocable) revert UnrevocableVesting();

    if (getRevoked(index)) revert AlreadyRevoked();

    if (block.timestamp >= end) revert CantRevokeEndedVesting();

    uint256 claimable = getClaimable(index, amount, start, end, cadence, percentageOnStart);

    setRevoked(index);

    if (claimable != 0) {
    IERC20(token).safeTransfer(account, claimable);
    emit Claim(account, claimable);
    }

    uint256 rest = amount - claimable;

    IERC20(token).safeTransfer(owner, rest);

    emit VestingRevoked(account, rest);
    }

    function getClaimable(
    uint256 index,
    uint256 amount,
    uint256 start,
    uint256 end,
    uint256 cadence,
    uint256 percentageOnStart
    ) public view returns (uint256) {
    if (block.timestamp < start) return 0;
    if (block.timestamp > end) return amount - claimed[index];

    uint256 elapsed = ((block.timestamp - start) / cadence) * cadence;

    if (percentageOnStart != 0) {
    uint256 claimableOnStart = (percentageOnStart * amount) / MAX_PERCENTAGE;
    uint256 claimableRest = (elapsed * (amount - claimableOnStart)) / (end - start);

    return claimableRest + claimableOnStart - claimed[index];
    }

    return (elapsed * amount) / (end - start) - claimed[index];
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
    if (newOwner == address(0)) revert ZeroAddress();
    owner = newOwner;
    }

    function getRevoked(uint256 index) public view returns (bool) {
    return _revokedBitmap.get(index);
    }

    function setRevoked(uint256 index) internal {
    _revokedBitmap.set(index);
    }
    }

    // solhint-disable func-name-mixedcase

    interface IUniswapV2Router01 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function addLiquidity(
    address tokenA,
    address tokenB,
    uint256 amountADesired,
    uint256 amountBDesired,
    uint256 amountAMin,
    uint256 amountBMin,
    address to,
    uint256 deadline
    )
    external
    returns (
    uint256 amountA,
    uint256 amountB,
    uint256 liquidity
    );

    function addLiquidityETH(
    address token,
    uint256 amountTokenDesired,
    uint256 amountTokenMin,
    uint256 amountETHMin,
    address to,
    uint256 deadline
    )
    external
    payable
    returns (
    uint256 amountToken,
    uint256 amountETH,
    uint256 liquidity
    );

    function removeLiquidity(
    address tokenA,
    address tokenB,
    uint256 liquidity,
    uint256 amountAMin,
    uint256 amountBMin,
    address to,
    uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB);

    function removeLiquidityETH(
    address token,
    uint256 liquidity,
    uint256 amountTokenMin,
    uint256 amountETHMin,
    address to,
    uint256 deadline
    ) external returns (uint256 amountToken, uint256 amountETH);

    function removeLiquidityWithPermit(
    address tokenA,
    address tokenB,
    uint256 liquidity,
    uint256 amountAMin,
    uint256 amountBMin,
    address to,
    uint256 deadline,
    bool approveMax,
    uint8 v,
    bytes32 r,
    bytes32 s
    ) external returns (uint256 amountA, uint256 amountB);

    function removeLiquidityETHWithPermit(
    address token,
    uint256 liquidity,
    uint256 amountTokenMin,
    uint256 amountETHMin,
    address to,
    uint256 deadline,
    bool approveMax,
    uint8 v,
    bytes32 r,
    bytes32 s
    ) external returns (uint256 amountToken, uint256 amountETH);

    function swapExactTokensForTokens(
    uint256 amountIn,
    uint256 amountOutMin,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapTokensForExactTokens(
    uint256 amountOut,
    uint256 amountInMax,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapExactETHForTokens(
    uint256 amountOutMin,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external payable returns (uint256[] memory amounts);

    function swapTokensForExactETH(
    uint256 amountOut,
    uint256 amountInMax,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapExactTokensForETH(
    uint256 amountIn,
    uint256 amountOutMin,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapETHForExactTokens(
    uint256 amountOut,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external payable returns (uint256[] memory amounts);

    function quote(
    uint256 amountA,
    uint256 reserveA,
    uint256 reserveB
    ) external pure returns (uint256 amountB);

    function getAmountOut(
    uint256 amountIn,
    uint256 reserveIn,
    uint256 reserveOut
    ) external pure returns (uint256 amountOut);

    function getAmountIn(
    uint256 amountOut,
    uint256 reserveIn,
    uint256 reserveOut
    ) external pure returns (uint256 amountIn);

    function getAmountsOut(uint256 amountIn, address[] calldata path) external view returns (uint256[] memory amounts);

    function getAmountsIn(uint256 amountOut, address[] calldata path) external view returns (uint256[] memory amounts);
    }

    interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
    address token,
    uint256 liquidity,
    uint256 amountTokenMin,
    uint256 amountETHMin,
    address to,
    uint256 deadline
    ) external returns (uint256 amountETH);

    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
    address token,
    uint256 liquidity,
    uint256 amountTokenMin,
    uint256 amountETHMin,
    address to,
    uint256 deadline,
    bool approveMax,
    uint8 v,
    bytes32 r,
    bytes32 s
    ) external returns (uint256 amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
    uint256 amountIn,
    uint256 amountOutMin,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external;

    function swapExactETHForTokensSupportingFeeOnTransferTokens(
    uint256 amountOutMin,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external payable;

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
    uint256 amountIn,
    uint256 amountOutMin,
    address[] calldata path,
    address to,
    uint256 deadline
    ) external;
    }

    // solhint-disable func-name-mixedcase

    interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint256 value);
    event Transfer(address indexed from, address indexed to, uint256 value);

    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function totalSupply() external view returns (uint256);

    function balanceOf(address owner) external view returns (uint256);

    function allowance(address owner, address spender) external view returns (uint256);

    function approve(address spender, uint256 value) external returns (bool);

    function transfer(address to, uint256 value) external returns (bool);

    function transferFrom(
    address from,
    address to,
    uint256 value
    ) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function PERMIT_TYPEHASH() external pure returns (bytes32);

    function nonces(address owner) external view returns (uint256);

    function permit(
    address owner,
    address spender,
    uint256 value,
    uint256 deadline,
    uint8 v,
    bytes32 r,
    bytes32 s
    ) external;

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);
    event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to);
    event Swap(
    address indexed sender,
    uint256 amount0In,
    uint256 amount1In,
    uint256 amount0Out,
    uint256 amount1Out,
    address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint256);

    function factory() external view returns (address);

    function token0() external view returns (address);

    function token1() external view returns (address);

    function getReserves()
    external
    view
    returns (
    uint112 reserve0,
    uint112 reserve1,
    uint32 blockTimestampLast
    );

    function price0CumulativeLast() external view returns (uint256);

    function price1CumulativeLast() external view returns (uint256);

    function kLast() external view returns (uint256);

    function mint(address to) external returns (uint256 liquidity);

    function burn(address to) external returns (uint256 amount0, uint256 amount1);

    function swap(
    uint256 amount0Out,
    uint256 amount1Out,
    address to,
    bytes calldata data
    ) external;

    function skim(address to) external;

    function sync() external;

    function initialize(address, address) external;
    }

    // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)

    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

    /**
    * @dev Provides information about the current execution context, including the
    * sender of the transaction and its data. While these are generally available
    * via msg.sender and msg.data, they should not be accessed in such a direct
    * manner, since when dealing with meta-transactions the account sending and
    * paying for execution may not be the actual sender (as far as an application
    * is concerned).
    *
    * This contract is only required for intermediate, library-like contracts.
    */
    abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
    return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
    return msg.data;
    }
    }

    /**
    * @dev Contract module which provides a basic access control mechanism, where
    * there is an account (an owner) that can be granted exclusive access to
    * specific functions.
    *
    * By default, the owner account will be the one that deploys the contract. This
    * can later be changed with {transferOwnership}.
    *
    * This module is used through inheritance. It will make available the modifier
    * `onlyOwner`, which can be applied to your functions to restrict their use to
    * the owner.
    */
    abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
    * @dev Initializes the contract setting the deployer as the initial owner.
    */
    constructor() {
    _transferOwnership(_msgSender());
    }

    /**
    * @dev Throws if called by any account other than the owner.
    */
    modifier onlyOwner() {
    _checkOwner();
    _;
    }

    /**
    * @dev Returns the address of the current owner.
    */
    function owner() public view virtual returns (address) {
    return _owner;
    }

    /**
    * @dev Throws if the sender is not the owner.
    */
    function _checkOwner() internal view virtual {
    require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
    * @dev Leaves the contract without owner. It will not be possible to call
    * `onlyOwner` functions anymore. Can only be called by the current owner.
    *
    * NOTE: Renouncing ownership will leave the contract without an owner,
    * thereby removing any functionality that is only available to the owner.
    */
    function renounceOwnership() public virtual onlyOwner {
    _transferOwnership(address(0));
    }

    /**
    * @dev Transfers ownership of the contract to a new account (`newOwner`).
    * Can only be called by the current owner.
    */
    function transferOwnership(address newOwner) public virtual onlyOwner {
    require(newOwner != address(0), "Ownable: new owner is the zero address");
    _transferOwnership(newOwner);
    }

    /**
    * @dev Transfers ownership of the contract to a new account (`newOwner`).
    * Internal function without access restriction.
    */
    function _transferOwnership(address newOwner) internal virtual {
    address oldOwner = _owner;
    _owner = newOwner;
    emit OwnershipTransferred(oldOwner, newOwner);
    }
    }

    // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

    /**
    * @dev Contract module that helps prevent reentrant calls to a function.
    *
    * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
    * available, which can be applied to functions to make sure there are no nested
    * (reentrant) calls to them.
    *
    * Note that because there is a single `nonReentrant` guard, functions marked as
    * `nonReentrant` may not call one another. This can be worked around by making
    * those functions `private`, and then adding `external` `nonReentrant` entry
    * points to them.
    *
    * TIP: If you would like to learn more about reentrancy and alternative ways
    * to protect against it, check out our blog post
    * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
    */
    abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
    _status = _NOT_ENTERED;
    }

    /**
    * @dev Prevents a contract from calling itself, directly or indirectly.
    * Calling a `nonReentrant` function from another `nonReentrant`
    * function is not supported. It is possible to prevent this from happening
    * by making the `nonReentrant` function external, and making it call a
    * `private` function that does the actual work.
    */
    modifier nonReentrant() {
    // On the first call to nonReentrant, _notEntered will be true
    require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

    // Any calls to nonReentrant after this point will fail
    _status = _ENTERED;

    _;

    // By storing the original value once again, a refund is triggered (see
    // https://eips.ethereum.org/EIPS/eip-2200)
    _status = _NOT_ENTERED;
    }
    }

    contract VestingFactory is Ownable, ReentrancyGuard {
    using SafeERC20 for IERC20;

    bool public isWethFirst;
    address public usdTokenAddress;
    uint96 public feesInUSD;
    address public companyWallet;
    IUniswapV2Router02 public uniV2Router;
    IUniswapV2Pair public uniV2Pair;
    mapping(address => bool) public feelessTokens;

    error NotContract();
    error ZeroAddress();
    error FeeNotMet(uint256 required, uint256 provided);
    error ZeroAmount();
    error EthTransferFailed();

    event VestingCreated(
    address indexed creator,
    address vestingAddr,
    address indexed token,
    bytes32 merkleRoot,
    uint256 totalAmount,
    uint256 fee
    );
    event FeesChange(address uniV2Router, address uniV2Pair, uint256 feesUsd, address companyWallet);

    modifier onlyContract(address account) {
    if (account.code.length == 0) revert NotContract();
    _;
    }

    function createVesting(
    address token,
    bytes32 merkleRoot,
    uint256 totalAmount
    ) external payable nonReentrant {
    if (totalAmount == 0) revert ZeroAmount();
    uint256 fee = handleFees(token);

    Vesting vesting = new Vesting(token, merkleRoot, msg.sender);

    IERC20(token).safeTransferFrom(msg.sender, address(vesting), totalAmount);

    emit VestingCreated(msg.sender, address(vesting), token, merkleRoot, totalAmount, fee);
    }

    function safeTransferETH(address to, uint256 amount) internal {
    bool success;

    assembly {
    // Transfer the ETH and store if it succeeded or not.
    success := call(gas(), to, amount, 0, 0, 0, 0)
    }

    if (!success) revert EthTransferFailed();
    }

    function handleFees(address token) internal returns (uint256) {
    uint256 feeInEth = getFeeInETH(token);
    if (feeInEth == 0) {
    return 0;
    }

    if (msg.value < feeInEth) {
    // allow 5% less fee due to price change
    if (((feeInEth - msg.value) * 100) / feeInEth > 5) revert FeeNotMet(feeInEth, msg.value);

    safeTransferETH(companyWallet, msg.value);

    return msg.value;
    }

    safeTransferETH(companyWallet, feeInEth);

    if (msg.value > feeInEth) {
    safeTransferETH(msg.sender, msg.value - feeInEth);
    }

    return feeInEth;
    }

    function setFeeParams(
    address _uniV2Router,
    address _uniV2Pair,
    uint96 _feesInUSD,
    address _companyWallet
    ) external onlyOwner onlyContract(_uniV2Router) onlyContract(_uniV2Pair) {
    if (_companyWallet == address(0)) revert ZeroAddress();

    uniV2Router = IUniswapV2Router02(_uniV2Router);
    uniV2Pair = IUniswapV2Pair(_uniV2Pair);

    feesInUSD = _feesInUSD;
    companyWallet = _companyWallet;

    isWethFirst = uniV2Pair.token0() == uniV2Router.WETH();

    emit FeesChange(_uniV2Router, _uniV2Pair, _feesInUSD, companyWallet);
    }

    function getFeeInETH(address token) public view returns (uint256) {
    uint256 _feesInUSD = feesInUSD;
    if (_feesInUSD == 0 || feelessTokens[token]) {
    return 0;
    }

    (uint256 reserve0, uint256 reserve1, ) = uniV2Pair.getReserves();
    return
    isWethFirst
    ? uniV2Router.getAmountIn(_feesInUSD, reserve0, reserve1)
    : uniV2Router.getAmountIn(_feesInUSD, reserve1, reserve0);
    }

    function setFeelessToken(address tokenAddress, bool feeless) public onlyOwner {
    feelessTokens[tokenAddress] = feeless;
    }
    }