Created
January 21, 2019 15:51
-
-
Save ly0/d91d40f923b6052d7d327f82c508b47c to your computer and use it in GitHub Desktop.
mobilenetv1_yolo.prototxt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "MobileNet-YOLO" | |
| input: "data" | |
| input_shape { | |
| dim: 1 | |
| dim: 3 | |
| dim: 416 | |
| dim: 416 | |
| } | |
| layer { | |
| name: "conv0" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv0" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0/bn" | |
| type: "BatchNorm" | |
| bottom: "conv0" | |
| top: "conv0" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv0/scale" | |
| type: "Scale" | |
| bottom: "conv0" | |
| top: "conv0" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0/relu" | |
| type: "ReLU" | |
| bottom: "conv0" | |
| top: "conv0" | |
| } | |
| layer { | |
| name: "conv1/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv0" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 32 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/scale" | |
| type: "Scale" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| } | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "conv1/dw" | |
| top: "conv1" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "conv1" | |
| top: "conv1" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv1/scale" | |
| type: "Scale" | |
| bottom: "conv1" | |
| top: "conv1" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/relu" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| layer { | |
| name: "conv2/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv1" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 64 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/scale" | |
| type: "Scale" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| } | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "conv2/dw" | |
| top: "conv2" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/bn" | |
| type: "BatchNorm" | |
| bottom: "conv2" | |
| top: "conv2" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv2/scale" | |
| type: "Scale" | |
| bottom: "conv2" | |
| top: "conv2" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/relu" | |
| type: "ReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| layer { | |
| name: "conv3/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv2" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 128 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/scale" | |
| type: "Scale" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| } | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "conv3/dw" | |
| top: "conv3" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/bn" | |
| type: "BatchNorm" | |
| bottom: "conv3" | |
| top: "conv3" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv3/scale" | |
| type: "Scale" | |
| bottom: "conv3" | |
| top: "conv3" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/relu" | |
| type: "ReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| layer { | |
| name: "conv4/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv3" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 128 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/scale" | |
| type: "Scale" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| } | |
| layer { | |
| name: "conv4" | |
| type: "Convolution" | |
| bottom: "conv4/dw" | |
| top: "conv4" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/bn" | |
| type: "BatchNorm" | |
| bottom: "conv4" | |
| top: "conv4" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv4/scale" | |
| type: "Scale" | |
| bottom: "conv4" | |
| top: "conv4" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/relu" | |
| type: "ReLU" | |
| bottom: "conv4" | |
| top: "conv4" | |
| } | |
| layer { | |
| name: "conv5/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv4" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 256 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/scale" | |
| type: "Scale" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| } | |
| layer { | |
| name: "conv5" | |
| type: "Convolution" | |
| bottom: "conv5/dw" | |
| top: "conv5" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/bn" | |
| type: "BatchNorm" | |
| bottom: "conv5" | |
| top: "conv5" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv5/scale" | |
| type: "Scale" | |
| bottom: "conv5" | |
| top: "conv5" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/relu" | |
| type: "ReLU" | |
| bottom: "conv5" | |
| top: "conv5" | |
| } | |
| layer { | |
| name: "conv6/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv5" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 256 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/scale" | |
| type: "Scale" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| } | |
| layer { | |
| name: "conv6" | |
| type: "Convolution" | |
| bottom: "conv6/dw" | |
| top: "conv6" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/bn" | |
| type: "BatchNorm" | |
| bottom: "conv6" | |
| top: "conv6" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv6/scale" | |
| type: "Scale" | |
| bottom: "conv6" | |
| top: "conv6" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/relu" | |
| type: "ReLU" | |
| bottom: "conv6" | |
| top: "conv6" | |
| } | |
| layer { | |
| name: "conv7/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv6" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/scale" | |
| type: "Scale" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| } | |
| layer { | |
| name: "conv7" | |
| type: "Convolution" | |
| bottom: "conv7/dw" | |
| top: "conv7" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/bn" | |
| type: "BatchNorm" | |
| bottom: "conv7" | |
| top: "conv7" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv7/scale" | |
| type: "Scale" | |
| bottom: "conv7" | |
| top: "conv7" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/relu" | |
| type: "ReLU" | |
| bottom: "conv7" | |
| top: "conv7" | |
| } | |
| layer { | |
| name: "conv8/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv7" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/scale" | |
| type: "Scale" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| } | |
| layer { | |
| name: "conv8" | |
| type: "Convolution" | |
| bottom: "conv8/dw" | |
| top: "conv8" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/bn" | |
| type: "BatchNorm" | |
| bottom: "conv8" | |
| top: "conv8" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv8/scale" | |
| type: "Scale" | |
| bottom: "conv8" | |
| top: "conv8" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/relu" | |
| type: "ReLU" | |
| bottom: "conv8" | |
| top: "conv8" | |
| } | |
| layer { | |
| name: "conv9/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv8" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/scale" | |
| type: "Scale" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| } | |
| layer { | |
| name: "conv9" | |
| type: "Convolution" | |
| bottom: "conv9/dw" | |
| top: "conv9" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/bn" | |
| type: "BatchNorm" | |
| bottom: "conv9" | |
| top: "conv9" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv9/scale" | |
| type: "Scale" | |
| bottom: "conv9" | |
| top: "conv9" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/relu" | |
| type: "ReLU" | |
| bottom: "conv9" | |
| top: "conv9" | |
| } | |
| layer { | |
| name: "conv10/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv9" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/scale" | |
| type: "Scale" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| } | |
| layer { | |
| name: "conv10" | |
| type: "Convolution" | |
| bottom: "conv10/dw" | |
| top: "conv10" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/bn" | |
| type: "BatchNorm" | |
| bottom: "conv10" | |
| top: "conv10" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv10/scale" | |
| type: "Scale" | |
| bottom: "conv10" | |
| top: "conv10" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/relu" | |
| type: "ReLU" | |
| bottom: "conv10" | |
| top: "conv10" | |
| } | |
| layer { | |
| name: "conv11/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv10" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/scale" | |
| type: "Scale" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| } | |
| layer { | |
| name: "conv11" | |
| type: "Convolution" | |
| bottom: "conv11/dw" | |
| top: "conv11" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/bn" | |
| type: "BatchNorm" | |
| bottom: "conv11" | |
| top: "conv11" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv11/scale" | |
| type: "Scale" | |
| bottom: "conv11" | |
| top: "conv11" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/relu" | |
| type: "ReLU" | |
| bottom: "conv11" | |
| top: "conv11" | |
| } | |
| layer { | |
| name: "conv12/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv11" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/scale" | |
| type: "Scale" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| } | |
| layer { | |
| name: "conv12" | |
| type: "Convolution" | |
| bottom: "conv12/dw" | |
| top: "conv12" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/bn" | |
| type: "BatchNorm" | |
| bottom: "conv12" | |
| top: "conv12" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv12/scale" | |
| type: "Scale" | |
| bottom: "conv12" | |
| top: "conv12" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/relu" | |
| type: "ReLU" | |
| bottom: "conv12" | |
| top: "conv12" | |
| } | |
| layer { | |
| name: "conv13/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv12" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1024 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/scale" | |
| type: "Scale" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| } | |
| layer { | |
| name: "conv13" | |
| type: "Convolution" | |
| bottom: "conv13/dw" | |
| top: "conv13" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/bn" | |
| type: "BatchNorm" | |
| bottom: "conv13" | |
| top: "conv13" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv13/scale" | |
| type: "Scale" | |
| bottom: "conv13" | |
| top: "conv13" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/relu" | |
| type: "ReLU" | |
| bottom: "conv13" | |
| top: "conv13" | |
| } | |
| #layer { | |
| # name: "concat1" | |
| # type: "Concat" | |
| # bottom: "conv11" | |
| # top: "concat1" | |
| #} | |
| #layer { | |
| # name: "reorg1" | |
| # type: "Reorg" | |
| # bottom: "concat1" | |
| # top: "reorg1" | |
| # reorg_param { | |
| # stride: 2 | |
| # } | |
| #} | |
| #layer { | |
| # name: "concat2" | |
| # type: "Concat" | |
| # bottom: "reorg1" | |
| # bottom: "conv13" | |
| # top: "concat2" | |
| #} | |
| layer { | |
| name: "conv16/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv13" | |
| top: "conv16/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1024 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv16/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv16/dw" | |
| top: "conv16/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv16/dw/scale" | |
| type: "Scale" | |
| bottom: "conv16/dw" | |
| top: "conv16/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv16/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv16/dw" | |
| top: "conv16/dw" | |
| } | |
| layer { | |
| name: "conv17" | |
| type: "Convolution" | |
| bottom: "conv16/dw" | |
| top: "conv17" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/bn" | |
| type: "BatchNorm" | |
| bottom: "conv17" | |
| top: "conv17" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv17/scale" | |
| type: "Scale" | |
| bottom: "conv17" | |
| top: "conv17" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/relu" | |
| type: "ReLU" | |
| bottom: "conv17" | |
| top: "conv17" | |
| } | |
| layer { | |
| name: "upsample" | |
| type: "Deconvolution" | |
| bottom: "conv17" | |
| top: "upsample" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 4 stride: 2 pad: 1 | |
| group: 512 | |
| weight_filler: { type: "bilinear" } | |
| bias_term: false | |
| } | |
| } | |
| layer { | |
| name: "conv_18/sum" | |
| type: "Eltwise" | |
| bottom: "conv11" | |
| bottom: "upsample" | |
| top: "conv_18/sum" | |
| } | |
| layer { | |
| name: "conv19/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv_18/sum" | |
| top: "conv19/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv19/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv19/dw" | |
| top: "conv19/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv19/dw/scale" | |
| type: "Scale" | |
| bottom: "conv19/dw" | |
| top: "conv19/dw" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv19/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv19/dw" | |
| top: "conv19/dw" | |
| } | |
| layer { | |
| name: "conv20" | |
| type: "Convolution" | |
| bottom: "conv19/dw" | |
| top: "conv20" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv20/bn" | |
| type: "BatchNorm" | |
| bottom: "conv20" | |
| top: "conv20" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv20/scale" | |
| type: "Scale" | |
| bottom: "conv20" | |
| top: "conv20" | |
| param { | |
| lr_mult: 0.1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv20/relu" | |
| type: "ReLU" | |
| bottom: "conv20" | |
| top: "conv20" | |
| } | |
| layer { | |
| name: "conv22_indoor" | |
| type: "Convolution" | |
| bottom: "conv17" | |
| top: "conv22" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 125 | |
| kernel_size: 1 | |
| pad: 0 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv23_indoor" | |
| type: "Convolution" | |
| bottom: "conv20" | |
| top: "conv23" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 125 | |
| kernel_size: 1 | |
| pad: 0 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "detection_out" | |
| type: "YoloDetectionOutput" | |
| bottom: "conv22" | |
| bottom: "conv23" | |
| top: "detection_out" | |
| include { | |
| phase: TEST | |
| } | |
| yolo_detection_output_param { | |
| num_classes: 20 | |
| coords: 4 | |
| confidence_threshold: 0.40 | |
| nms_threshold: 0.45 | |
| biases: 1.08 | |
| biases: 1.19 | |
| biases: 3.42 | |
| biases: 4.41 | |
| biases: 6.63 | |
| biases: 11.38 | |
| biases: 9.42 | |
| biases: 5.11 | |
| biases: 16.62 | |
| biases: 10.52 | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment