Last active
December 10, 2015 20:49
-
-
Save mcsquaredjr/4490985 to your computer and use it in GitHub Desktop.
Revisions
-
mcsquaredjr revised this gist
Jan 9, 2013 . 1 changed file with 1 addition and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -60,7 +60,7 @@ def computeCoords(self, xo, yo, R, pos): ############################################################ # CLASS ARROW # ############################################################ class Arrow(object): '''Computes coordinates of an arrow if coorinates of a tip -
mcsquaredjr created this gist
Jan 9, 2013 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,544 @@ # Detect cardinal and diagonal gestures in Pythonista scene # 8/3/13 created # Copyright (c) by McSquaredJr. from scene import * from random import random from colorsys import hsv_to_rgb import math '''A demo showing how to detect cardinal and diagonal gestures using Al Sweigart's moosegesture library (included). Take into consideration that Al's library uses a different coordinate system with its origin at the top-left corner, due to which it will return results that should be flipped verically. The moosegesture also allows to detect compound gestures, not included in this demo. ''' ############################################################ # CLASS UTILS # ############################################################ class Utils(object): '''Helper class to compute coordinates on the instruction screen ''' @classmethod def computeCoords(self, xo, yo, R, pos): if pos == 'n': xt = xo yt = yo + R elif pos == 's': xt = xo yt = yo - R elif pos == 'e': xt = xo + R yt = yo elif pos == 'w': xt = xo - R yt = yo elif pos == 'ne': xt = xo + 0.707*R yt = yo + 0.707*R elif pos == 'nw': xt = xo - 0.707*R yt = yo + 0.707*R elif pos == 'se': xt = xo + 0.707*R yt = yo - 0.707*R elif pos == 'sw': xt = xo - 0.707*R yt = yo - 0.707*R else: print '***Error, incorrect position %s' % (pos) xt = None yt = None return xt, yt ############################################################ # CLASS ARROW # ############################################################ class Arrow(object): '''Computes coordinates of an arrow if coorinates of a tip and a tail are given ''' def __init__(self, tailX, tailY, tipX, tipY, arrowLength=20): #self.layer = layer self.tipX = tipX self.tipY = tipY self.tailX = tailX self.tailY = tailY self.arrowLength = arrowLength self.xs, self.ys = self.__compute() def __compute(self): '''Compute arrow coordinates''' dx = self.tipX - self.tailX; dy = self.tipY - self.tailY; theta = math.atan2(dy, dx); rad = math.radians(35); x = self.tipX - self.arrowLength * math.cos(theta + rad) y = self.tipY - self.arrowLength * math.sin(theta + rad) phi2 = math.radians(-35) x2 = self.tipX - self.arrowLength * math.cos(theta + phi2) y2 = self.tipY - self.arrowLength * math.sin(theta + phi2) arrowXs = [self.tipX, x, x2] arrowYs = [self.tipY, y, y2] return arrowXs, arrowYs def draw(self, strokeColor=(0.8, 0.8, 0.8), strokeWidth=4): '''Draw the arrow''' stroke(strokeColor[0], strokeColor[1], strokeColor[2]) stroke_weight(strokeWidth) line(self.tipX, self.tipY, self.tailX, self.tailY) line(self.xs[0], self.ys[0], self.xs[1], self.ys[1]) line(self.xs[0], self.ys[0], self.xs[2], self.ys[2]) ############################################################ # TRACE CLASS # ############################################################ class Trace(object): def __init__(self, location): self.velocity = Size(1, 1) self.location = location self.hue = 0.8 self.alpha = 0.8 ############################################################ # TRACESCENE CLASS # ############################################################ class TraceScene(Scene): def setup(self): self.show_instructions = True self.traces = set() self.p_size = 24 if self.size.w > 700 else 12 self.msg = 'Draw a gesture with your finger' # Initial text size self.s = 40 if self.size.w > 700 else 17 self.coords = [] # Radius within which the arrows are drawn # Define parameters self.xo = self.size.w/2.0 self.yo = self.size.h*0.6 R = 0.35*self.size.w # Positions of arrow tips pos = ['n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw'] self.arrows = [] # Compute coordinates of arrow tips for i in range(len(pos)): xt, yt = Utils.computeCoords(self.xo, self.yo, R, pos[i]) self.arrows.append(Arrow(self.xo, self.yo, xt, yt)) self.xt = [] self.yt = [] # Compute coordinates of labels for i in range(len(pos)): xt, yt = Utils.computeCoords(self.xo, self.yo, 1.1*R, pos[i]) self.xt.append(xt) self.yt.append(yt) def should_rotate(self, orientation): return False def touch_began(self, touch): self.coords = [] if self.show_instructions: self.show_instructions = False blend_mode(BLEND_ADD) self.coords.append(touch.location.as_tuple()) try: del self.layer except AttributeError: pass def touch_moved(self, touch): trace = Trace(touch.location) self.traces.add(trace) self.coords.append(touch.location.as_tuple()) def touch_ended(self, touch): self.s = 80/2 if self.size.w > 700 else 40/2 self.coords.append(touch.location.as_tuple()) gesture = getGesture(self.coords) gesture_dict = {1:'UL', 2:'U', 3:'UR', 4:'L', 5:'None', 6:'R', 7:'LR', 8:'D', 9:'RD'} try: self.txt = gesture_dict[gesture[-1]] except IndexError: self.txt = '' fs = 400 if self.size.w > 700 else 100 self.layer = TextLayer(self.txt, 'Futura', fs) self.layer.background = Color(0.14, 0.14, 0.14) self.layer.tint = Color(0.8, 0.8, 0.8) self.layer.frame.center(*self.bounds.center().as_tuple()) self.layer.animate('alpha', 0.0, duration=1, autoreverse=False, repeat=1) blend_mode(BLEND_NORMAL) def draw(self): background(0.14, 0.14, 0.14) if self.show_instructions: tint(0.7, 0, 0) text(self.msg, 'Futura', self.s, self.xo, self.yo/.6/4.0) lbl = ['U', 'UR', 'R', 'DR', 'D', 'LR', 'L', 'UL'] ellipse(self.xo-15, self.yo-15, 30, 30) fill(0.8, 0.8, 0.8) for i in range(len(self.arrows)): self.arrows[i].draw() text(lbl[i], 'Futura', self.s, self.xt[i], self.yt[i]) try: self.layer.update(self.dt) self.layer.draw() except AttributeError: pass dead = set() for trace in self.traces: r, g, b = (1, 0, 0) a = trace.alpha tint(r * a, g * a, b * a, a) x, y = trace.location.as_tuple() s = (2 - a) * self.p_size image('White_Circle', x - s/2, y - s/2, s, s) trace.alpha -= 0.02 trace.hue += 0.02 trace.location.x += trace.velocity.w trace.location.y += trace.velocity.h if trace.alpha <= 0: dead.add(trace) self.traces -= dead #-------------------------------------------------------------------------- """ "MooseGesture 0.1" a mouse gestures recognition library. Al Sweigart [email protected] http://coffeeghost.net/2011/05/09/moosegesture-python-mouse-gestures-module Usage: import moosegesture gesture = moosegesture.getGesture(points) Where "points" is a list of x, y coordinate tuples, e.g. [(100, 200), (1234, 5678), ...] getGesture returns a list of integers for the recognized mouse gesture. The integers correspond to the 8 cardinal and diagonal directions: up-left up up-right 7 8 9 left 4 6 right 1 2 3 down-left down down-right Second usage: strokes = [2, 4, 6] gestures = [[2, 4, 2], [2, 6, 9]] gesture = moosegesture.findClosestMatchingGesture(strokes, gestures) gesture == [2, 4, 2] Where "strokes" is a list of the directional integers that are returned from getGesture(). This returns the closest resembling gesture from the list of gestures that is passed to the function. The optional "tolerance" parameter can ensure that the "closest" identified gesture isn't too different. Explanation of the nomenclature in this module: A "point" is a 2D tuple of x, y values. These values can be ints or floats, MooseGesture supports both. A "point pair" is a point and its immediately subsequent point, i.e. two points that are next to each other. A "segment" is two or more ordered points forming a series of lines. A "stroke" is a segment going in a single direction (one of the 8 cardinal or diagonal directions: up, upright, left, etc.) A "gesture" is one or more strokes in a specific pattern, e.g. up then right then down then left. ############################################################ # MOOSEGESTURE # ############################################################ # Copyright (c) 2011, Al Sweigart # All rights reserved. # # BSD-style license: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the MooseGesture nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY Al Sweigart "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL Al Sweigart BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from math import sqrt from sys import maxsize # This is the minimum distance the mouse must travel (in pixels) before a # segment will be considered for stroke interpretation. _MIN_SEG_LEN = 60 # The integers-to-directions mapping matches the keypad: # 7 8 9 # 4 6 # 1 2 3 DOWNLEFT = 1 DOWN = 2 DOWNRIGHT = 3 LEFT = 4 RIGHT = 6 UPLEFT = 7 UP = 8 UPRIGHT = 9 _strokesStrings = {1:'DL', 2:'D', 3:'DR', 4:'L', 6:'R', 7:'UL', 8:'U', 9:'UR'} def getGesture(points): # Returns a gesture as a list of directional integers, i.e. [2,6,4] for # the down-left-right gesture. # # The points param is a list of tuples of XY points that make up the user's # mouse gesture. return _identifyStrokes(points)[0] def getSegments(points): # Returns a list of tuples of integers. The tuples are the start and end # indexes of the points that make up a consistent stroke. return _identifyStrokes(points)[1] def getGestureAndSegments(points): # Returns a list of tuples. The first item in the tuple is the directional # integer, and the second item is a tuple of integers for the start and end # indexes of the points that make up the stroke. strokes, strokeSegments = _identifyStrokes(points) return list(zip(strokes, strokeSegments)) def getGestureStr(strokes): # Returns a string of space-delimited text characters that represent the # strokes passed in. For example, getGesture([2, 6, 4]) returns "D R L". # # The strokes parameter is a list of directional integers, like the kind # returned by getGesture(). if len(strokes) and type(strokes[0]) == type(0): # points is a list of directional integers, returned from getGesture() return ' '.join(_strokesStrings[x] for x in strokes) else: # points is returned from getGestureAndSegments() return ' '.join(_strokesStrings[x] for x in _identifyStrokes(strokes)[0]) def findClosestMatchingGesture(strokes, gestureList, tolerance=maxsize): # Returns the gesture in gestureList that closest matches the gesture in # strokes. The tolerance is how many differences there can be and still # be considered a match. if len(gestureList) == 0: return None strokes = ''.join(strokes) gestureList = [''.join(x) for x in gestureList] gestureList = list(frozenset(gestureList)) # make a unique list distances = {} for g in gestureList: dist = levenshteinDistance(strokes, g) if dist in distances: distances[dist].append(g) else: distances[dist] = [g] smallestKey = min(distances.keys()) if len(distances[smallestKey]) == 1 and smallestKey <= tolerance: return [int(x) for x in distances[min(distances.keys())]] else: return None def levenshteinDistance(s1, s2): # Returns the Levenshtein Distance between two strings as an integer. # http://en.wikipedia.org/wiki/Levenshtein_distance # The Levenshtein Distance (aka edit distance) is how many changes (i.e. # insertions, deletions, substitutions) have to be made to convert one # string into another. # # For example, the Levenshtein distance between "kitten" and "sitting" is # 3, since the following three edits change one into the other, and there # is no way to do it with fewer than three edits: # kitten -> sitten -> sittin -> sitting len1 = len(s1) len2 = len(s2) matrix = list(range(len1 + 1)) * (len2 + 1) for i in range(len2 + 1): matrix[i] = list(range(i, i + len1 + 1)) for i in range(len2): for j in range(len1): if s1[j] == s2[i]: matrix[i+1][j+1] = min(matrix[i+1][j] + 1, matrix[i][j+1] + 1, matrix[i][j]) else: matrix[i+1][j+1] = min(matrix[i+1][j] + 1, matrix[i][j+1] + 1, matrix[i][j] + 1) return matrix[len2][len1] def setMinStrokeLen(val): # Set the length (in pixels) a stroke must be to be recognized as a stroke. _MIN_SEG_LEN = val def getMinStrokeLen(): # Get the minimum segment length. return _MIN_SEG_LEN # Private Functions: def _identifyStrokes(points): strokes = [] strokeSegments = [] # calculate lengths between each sequential points distances = [] for i in range(len(points)-1): distances.append( _distance(points[i], points[i+1]) ) # keeps getting points until we go past the min. segment length #startSegPoint = 0 #while startSegPoint < len(points)-1: for startSegPoint in range(len(points)-1): segmentDist = 0 curDir = None consistent = True direction = None for curSegPoint in range(startSegPoint, len(points)-1): segmentDist += distances[curSegPoint] if segmentDist >= _MIN_SEG_LEN: # check if all points are going the same direction. for i in range(startSegPoint, curSegPoint): direction = _getDir(points[i], points[i+1]) if curDir is None: curDir = direction elif direction != curDir: consistent = False break break if not consistent: continue elif (direction is not None and ( (not len(strokes)) or (len(strokes) and strokes[-1] != direction) )): strokes.append(direction) strokeSegments.append( [startSegPoint, curSegPoint] ) elif len(strokeSegments): # update and lengthen the latest stroke since this stroke is being lengthened. strokeSegments[-1][1] = curSegPoint return strokes, strokeSegments def _getDir(coord1, coord2): # Return the integer of one of the 8 directions this line is going in. # coord1 and coord2 are (x, y) integers coordinates. x1, y1 = coord1 x2, y2 = coord2 if x1 == x2 and y1 == y2: return None # two coordinates are the same. elif x1 == x2 and y1 > y2: return UP elif x1 == x2 and y1 < y2: return DOWN elif x1 > x2 and y1 == y2: return LEFT elif x1 < x2 and y1 == y2: return RIGHT slope = float(y2 - y1) / float(x2 - x1) # Figure out which quadrant the line is going in, and then # determine the closest direction by calculating the slope if x2 > x1 and y2 < y1: # up right quadrant if slope > -0.4142: return RIGHT # slope is between 0 and 22.5 degrees elif slope < -2.4142: return UP # slope is between 67.5 and 90 degrees else: return UPRIGHT # slope is between 22.5 and 67.5 degrees elif x2 > x1 and y2 > y1: # down right quadrant if slope > 2.4142: return DOWN elif slope < 0.4142: return RIGHT else: return DOWNRIGHT elif x2 < x1 and y2 < y1: # up left quadrant if slope < 0.4142: return LEFT elif slope > 2.4142: return UP else: return UPLEFT elif x2 < x1 and y2 > y1: # down left quadrant if slope < -2.4142: return DOWN elif slope > -0.4142: return LEFT else: return DOWNLEFT def _distance(coord1, coord2): # Return distance between two points. This is a basic pythagorean theorem calculation. # coord1 and coord2 are (x, y) integers coordinates. xdist = coord1[0] - coord2[0] ydist = coord1[1] - coord2[1] return sqrt(xdist*xdist + ydist*ydist) if __name__ == '__main__': run(TraceScene(), orientation=PORTRAIT)