Skip to content

Instantly share code, notes, and snippets.

@mcsquaredjr
Last active December 10, 2015 20:49
Show Gist options
  • Save mcsquaredjr/4490985 to your computer and use it in GitHub Desktop.
Save mcsquaredjr/4490985 to your computer and use it in GitHub Desktop.

Revisions

  1. mcsquaredjr revised this gist Jan 9, 2013. 1 changed file with 1 addition and 1 deletion.
    2 changes: 1 addition & 1 deletion gestures.py
    Original file line number Diff line number Diff line change
    @@ -60,7 +60,7 @@ def computeCoords(self, xo, yo, R, pos):


    ############################################################
    # CLASS ARROW #
    # CLASS ARROW #
    ############################################################
    class Arrow(object):
    '''Computes coordinates of an arrow if coorinates of a tip
  2. mcsquaredjr created this gist Jan 9, 2013.
    544 changes: 544 additions & 0 deletions gestures.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,544 @@
    # Detect cardinal and diagonal gestures in Pythonista scene

    # 8/3/13 created
    # Copyright (c) by McSquaredJr.

    from scene import *
    from random import random
    from colorsys import hsv_to_rgb
    import math

    '''A demo showing how to detect cardinal and diagonal gestures
    using Al Sweigart's moosegesture library (included). Take into
    consideration that Al's library uses a different coordinate system
    with its origin at the top-left corner, due to which it will return
    results that should be flipped verically.
    The moosegesture also allows to detect compound gestures, not
    included in this demo.
    '''


    ############################################################
    # CLASS UTILS #
    ############################################################
    class Utils(object):
    '''Helper class to compute coordinates on the instruction
    screen
    '''
    @classmethod
    def computeCoords(self, xo, yo, R, pos):
    if pos == 'n':
    xt = xo
    yt = yo + R
    elif pos == 's':
    xt = xo
    yt = yo - R
    elif pos == 'e':
    xt = xo + R
    yt = yo
    elif pos == 'w':
    xt = xo - R
    yt = yo
    elif pos == 'ne':
    xt = xo + 0.707*R
    yt = yo + 0.707*R
    elif pos == 'nw':
    xt = xo - 0.707*R
    yt = yo + 0.707*R
    elif pos == 'se':
    xt = xo + 0.707*R
    yt = yo - 0.707*R
    elif pos == 'sw':
    xt = xo - 0.707*R
    yt = yo - 0.707*R
    else:
    print '***Error, incorrect position %s' % (pos)
    xt = None
    yt = None
    return xt, yt


    ############################################################
    # CLASS ARROW #
    ############################################################
    class Arrow(object):
    '''Computes coordinates of an arrow if coorinates of a tip
    and a tail are given
    '''
    def __init__(self, tailX, tailY, tipX, tipY,
    arrowLength=20):
    #self.layer = layer
    self.tipX = tipX
    self.tipY = tipY
    self.tailX = tailX
    self.tailY = tailY
    self.arrowLength = arrowLength
    self.xs, self.ys = self.__compute()

    def __compute(self):
    '''Compute arrow coordinates'''
    dx = self.tipX - self.tailX;
    dy = self.tipY - self.tailY;

    theta = math.atan2(dy, dx);

    rad = math.radians(35);
    x = self.tipX - self.arrowLength * math.cos(theta + rad)
    y = self.tipY - self.arrowLength * math.sin(theta + rad)

    phi2 = math.radians(-35)
    x2 = self.tipX - self.arrowLength * math.cos(theta + phi2)
    y2 = self.tipY - self.arrowLength * math.sin(theta + phi2)

    arrowXs = [self.tipX, x, x2]
    arrowYs = [self.tipY, y, y2]

    return arrowXs, arrowYs

    def draw(self, strokeColor=(0.8, 0.8, 0.8), strokeWidth=4):
    '''Draw the arrow'''
    stroke(strokeColor[0], strokeColor[1], strokeColor[2])
    stroke_weight(strokeWidth)
    line(self.tipX, self.tipY, self.tailX, self.tailY)
    line(self.xs[0], self.ys[0], self.xs[1], self.ys[1])
    line(self.xs[0], self.ys[0], self.xs[2], self.ys[2])


    ############################################################
    # TRACE CLASS #
    ############################################################
    class Trace(object):
    def __init__(self, location):
    self.velocity = Size(1, 1)
    self.location = location
    self.hue = 0.8
    self.alpha = 0.8

    ############################################################
    # TRACESCENE CLASS #
    ############################################################
    class TraceScene(Scene):
    def setup(self):
    self.show_instructions = True

    self.traces = set()
    self.p_size = 24 if self.size.w > 700 else 12
    self.msg = 'Draw a gesture with your finger'
    # Initial text size
    self.s = 40 if self.size.w > 700 else 17
    self.coords = []
    # Radius within which the arrows are drawn
    # Define parameters
    self.xo = self.size.w/2.0
    self.yo = self.size.h*0.6
    R = 0.35*self.size.w
    # Positions of arrow tips
    pos = ['n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw']

    self.arrows = []
    # Compute coordinates of arrow tips
    for i in range(len(pos)):
    xt, yt = Utils.computeCoords(self.xo, self.yo, R, pos[i])
    self.arrows.append(Arrow(self.xo, self.yo, xt, yt))

    self.xt = []
    self.yt = []
    # Compute coordinates of labels
    for i in range(len(pos)):
    xt, yt = Utils.computeCoords(self.xo, self.yo, 1.1*R, pos[i])
    self.xt.append(xt)
    self.yt.append(yt)

    def should_rotate(self, orientation):
    return False

    def touch_began(self, touch):
    self.coords = []
    if self.show_instructions:
    self.show_instructions = False
    blend_mode(BLEND_ADD)
    self.coords.append(touch.location.as_tuple())
    try:
    del self.layer
    except AttributeError:
    pass


    def touch_moved(self, touch):

    trace = Trace(touch.location)
    self.traces.add(trace)
    self.coords.append(touch.location.as_tuple())

    def touch_ended(self, touch):

    self.s = 80/2 if self.size.w > 700 else 40/2
    self.coords.append(touch.location.as_tuple())
    gesture = getGesture(self.coords)
    gesture_dict = {1:'UL', 2:'U', 3:'UR',
    4:'L', 5:'None', 6:'R',
    7:'LR', 8:'D', 9:'RD'}
    try:
    self.txt = gesture_dict[gesture[-1]]
    except IndexError:
    self.txt = ''


    fs = 400 if self.size.w > 700 else 100
    self.layer = TextLayer(self.txt, 'Futura', fs)
    self.layer.background = Color(0.14, 0.14, 0.14)
    self.layer.tint = Color(0.8, 0.8, 0.8)
    self.layer.frame.center(*self.bounds.center().as_tuple())
    self.layer.animate('alpha', 0.0, duration=1, autoreverse=False, repeat=1)

    blend_mode(BLEND_NORMAL)


    def draw(self):
    background(0.14, 0.14, 0.14)

    if self.show_instructions:
    tint(0.7, 0, 0)
    text(self.msg,
    'Futura', self.s, self.xo, self.yo/.6/4.0)

    lbl = ['U', 'UR', 'R', 'DR', 'D', 'LR', 'L', 'UL']
    ellipse(self.xo-15, self.yo-15, 30, 30)
    fill(0.8, 0.8, 0.8)
    for i in range(len(self.arrows)):
    self.arrows[i].draw()
    text(lbl[i], 'Futura', self.s, self.xt[i], self.yt[i])

    try:

    self.layer.update(self.dt)
    self.layer.draw()

    except AttributeError:
    pass

    dead = set()
    for trace in self.traces:
    r, g, b = (1, 0, 0)
    a = trace.alpha
    tint(r * a, g * a, b * a, a)
    x, y = trace.location.as_tuple()
    s = (2 - a) * self.p_size
    image('White_Circle', x - s/2, y - s/2, s, s)
    trace.alpha -= 0.02
    trace.hue += 0.02
    trace.location.x += trace.velocity.w
    trace.location.y += trace.velocity.h
    if trace.alpha <= 0:
    dead.add(trace)
    self.traces -= dead

    #--------------------------------------------------------------------------
    """
    "MooseGesture 0.1" a mouse gestures recognition library.
    Al Sweigart [email protected]
    http://coffeeghost.net/2011/05/09/moosegesture-python-mouse-gestures-module
    Usage:
    import moosegesture
    gesture = moosegesture.getGesture(points)
    Where "points" is a list of x, y coordinate tuples, e.g. [(100, 200), (1234, 5678), ...]
    getGesture returns a list of integers for the recognized mouse gesture. The integers
    correspond to the 8 cardinal and diagonal directions:
    up-left up up-right
    7 8 9
    left 4 6 right
    1 2 3
    down-left down down-right
    Second usage:
    strokes = [2, 4, 6]
    gestures = [[2, 4, 2], [2, 6, 9]]
    gesture = moosegesture.findClosestMatchingGesture(strokes, gestures)
    gesture == [2, 4, 2]
    Where "strokes" is a list of the directional integers that are returned from
    getGesture(). This returns the closest resembling gesture from the list of
    gestures that is passed to the function.
    The optional "tolerance" parameter can ensure that the "closest" identified
    gesture isn't too different.
    Explanation of the nomenclature in this module:
    A "point" is a 2D tuple of x, y values. These values can be ints or floats,
    MooseGesture supports both.
    A "point pair" is a point and its immediately subsequent point, i.e. two
    points that are next to each other.
    A "segment" is two or more ordered points forming a series of lines.
    A "stroke" is a segment going in a single direction (one of the 8 cardinal or
    diagonal directions: up, upright, left, etc.)
    A "gesture" is one or more strokes in a specific pattern, e.g. up then right
    then down then left.
    ############################################################
    # MOOSEGESTURE #
    ############################################################
    # Copyright (c) 2011, Al Sweigart
    # All rights reserved.
    #
    # BSD-style license:
    #
    # Redistribution and use in source and binary forms, with or without
    # modification, are permitted provided that the following conditions are met:
    # * Redistributions of source code must retain the above copyright
    # notice, this list of conditions and the following disclaimer.
    # * Redistributions in binary form must reproduce the above copyright
    # notice, this list of conditions and the following disclaimer in the
    # documentation and/or other materials provided with the distribution.
    # * Neither the name of the MooseGesture nor the
    # names of its contributors may be used to endorse or promote products
    # derived from this software without specific prior written permission.
    #
    # THIS SOFTWARE IS PROVIDED BY Al Sweigart "AS IS" AND ANY
    # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    # DISCLAIMED. IN NO EVENT SHALL Al Sweigart BE LIABLE FOR ANY
    # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    """

    from math import sqrt
    from sys import maxsize

    # This is the minimum distance the mouse must travel (in pixels) before a
    # segment will be considered for stroke interpretation.
    _MIN_SEG_LEN = 60

    # The integers-to-directions mapping matches the keypad:
    # 7 8 9
    # 4 6
    # 1 2 3
    DOWNLEFT = 1
    DOWN = 2
    DOWNRIGHT = 3
    LEFT = 4
    RIGHT = 6
    UPLEFT = 7
    UP = 8
    UPRIGHT = 9

    _strokesStrings = {1:'DL', 2:'D', 3:'DR', 4:'L', 6:'R', 7:'UL', 8:'U', 9:'UR'}

    def getGesture(points):
    # Returns a gesture as a list of directional integers, i.e. [2,6,4] for
    # the down-left-right gesture.
    #
    # The points param is a list of tuples of XY points that make up the user's
    # mouse gesture.
    return _identifyStrokes(points)[0]

    def getSegments(points):
    # Returns a list of tuples of integers. The tuples are the start and end
    # indexes of the points that make up a consistent stroke.
    return _identifyStrokes(points)[1]

    def getGestureAndSegments(points):
    # Returns a list of tuples. The first item in the tuple is the directional
    # integer, and the second item is a tuple of integers for the start and end
    # indexes of the points that make up the stroke.
    strokes, strokeSegments = _identifyStrokes(points)
    return list(zip(strokes, strokeSegments))

    def getGestureStr(strokes):
    # Returns a string of space-delimited text characters that represent the
    # strokes passed in. For example, getGesture([2, 6, 4]) returns "D R L".
    #
    # The strokes parameter is a list of directional integers, like the kind
    # returned by getGesture().
    if len(strokes) and type(strokes[0]) == type(0):
    # points is a list of directional integers, returned from getGesture()
    return ' '.join(_strokesStrings[x] for x in strokes)
    else:
    # points is returned from getGestureAndSegments()
    return ' '.join(_strokesStrings[x] for x in _identifyStrokes(strokes)[0])

    def findClosestMatchingGesture(strokes, gestureList, tolerance=maxsize):
    # Returns the gesture in gestureList that closest matches the gesture in
    # strokes. The tolerance is how many differences there can be and still
    # be considered a match.
    if len(gestureList) == 0:
    return None

    strokes = ''.join(strokes)
    gestureList = [''.join(x) for x in gestureList]
    gestureList = list(frozenset(gestureList)) # make a unique list
    distances = {}
    for g in gestureList:
    dist = levenshteinDistance(strokes, g)
    if dist in distances:
    distances[dist].append(g)
    else:
    distances[dist] = [g]
    smallestKey = min(distances.keys())
    if len(distances[smallestKey]) == 1 and smallestKey <= tolerance:
    return [int(x) for x in distances[min(distances.keys())]]
    else:
    return None

    def levenshteinDistance(s1, s2):
    # Returns the Levenshtein Distance between two strings as an integer.

    # http://en.wikipedia.org/wiki/Levenshtein_distance
    # The Levenshtein Distance (aka edit distance) is how many changes (i.e.
    # insertions, deletions, substitutions) have to be made to convert one
    # string into another.
    #
    # For example, the Levenshtein distance between "kitten" and "sitting" is
    # 3, since the following three edits change one into the other, and there
    # is no way to do it with fewer than three edits:
    # kitten -> sitten -> sittin -> sitting
    len1 = len(s1)
    len2 = len(s2)

    matrix = list(range(len1 + 1)) * (len2 + 1)
    for i in range(len2 + 1):
    matrix[i] = list(range(i, i + len1 + 1))
    for i in range(len2):
    for j in range(len1):
    if s1[j] == s2[i]:
    matrix[i+1][j+1] = min(matrix[i+1][j] + 1, matrix[i][j+1] + 1, matrix[i][j])
    else:
    matrix[i+1][j+1] = min(matrix[i+1][j] + 1, matrix[i][j+1] + 1, matrix[i][j] + 1)
    return matrix[len2][len1]

    def setMinStrokeLen(val):
    # Set the length (in pixels) a stroke must be to be recognized as a stroke.
    _MIN_SEG_LEN = val

    def getMinStrokeLen():
    # Get the minimum segment length.
    return _MIN_SEG_LEN




    # Private Functions:

    def _identifyStrokes(points):
    strokes = []
    strokeSegments = []

    # calculate lengths between each sequential points
    distances = []
    for i in range(len(points)-1):
    distances.append( _distance(points[i], points[i+1]) )

    # keeps getting points until we go past the min. segment length
    #startSegPoint = 0
    #while startSegPoint < len(points)-1:
    for startSegPoint in range(len(points)-1):
    segmentDist = 0
    curDir = None
    consistent = True
    direction = None
    for curSegPoint in range(startSegPoint, len(points)-1):
    segmentDist += distances[curSegPoint]
    if segmentDist >= _MIN_SEG_LEN:
    # check if all points are going the same direction.
    for i in range(startSegPoint, curSegPoint):
    direction = _getDir(points[i], points[i+1])
    if curDir is None:
    curDir = direction
    elif direction != curDir:
    consistent = False
    break
    break
    if not consistent:
    continue
    elif (direction is not None and ( (not len(strokes)) or (len(strokes) and strokes[-1] != direction) )):
    strokes.append(direction)
    strokeSegments.append( [startSegPoint, curSegPoint] )
    elif len(strokeSegments):
    # update and lengthen the latest stroke since this stroke is being lengthened.
    strokeSegments[-1][1] = curSegPoint
    return strokes, strokeSegments

    def _getDir(coord1, coord2):
    # Return the integer of one of the 8 directions this line is going in.
    # coord1 and coord2 are (x, y) integers coordinates.
    x1, y1 = coord1
    x2, y2 = coord2

    if x1 == x2 and y1 == y2:
    return None # two coordinates are the same.
    elif x1 == x2 and y1 > y2:
    return UP
    elif x1 == x2 and y1 < y2:
    return DOWN
    elif x1 > x2 and y1 == y2:
    return LEFT
    elif x1 < x2 and y1 == y2:
    return RIGHT

    slope = float(y2 - y1) / float(x2 - x1)

    # Figure out which quadrant the line is going in, and then
    # determine the closest direction by calculating the slope
    if x2 > x1 and y2 < y1: # up right quadrant
    if slope > -0.4142:
    return RIGHT # slope is between 0 and 22.5 degrees
    elif slope < -2.4142:
    return UP # slope is between 67.5 and 90 degrees
    else:
    return UPRIGHT # slope is between 22.5 and 67.5 degrees
    elif x2 > x1 and y2 > y1: # down right quadrant
    if slope > 2.4142:
    return DOWN
    elif slope < 0.4142:
    return RIGHT
    else:
    return DOWNRIGHT
    elif x2 < x1 and y2 < y1: # up left quadrant
    if slope < 0.4142:
    return LEFT
    elif slope > 2.4142:
    return UP
    else:
    return UPLEFT
    elif x2 < x1 and y2 > y1: # down left quadrant
    if slope < -2.4142:
    return DOWN
    elif slope > -0.4142:
    return LEFT
    else:
    return DOWNLEFT

    def _distance(coord1, coord2):
    # Return distance between two points. This is a basic pythagorean theorem calculation.
    # coord1 and coord2 are (x, y) integers coordinates.
    xdist = coord1[0] - coord2[0]
    ydist = coord1[1] - coord2[1]
    return sqrt(xdist*xdist + ydist*ydist)



    if __name__ == '__main__':
    run(TraceScene(), orientation=PORTRAIT)