-
-
Save michael-halim/f91f7ade16fdc3da1f8dca372b74db5e to your computer and use it in GitHub Desktop.
Revisions
-
Brandyn A. White revised this gist
Sep 15, 2012 . 1 changed file with 24 additions and 5 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -149,7 +149,7 @@ def mean_average_precision(rs): return np.mean([average_precision(r) for r in rs]) def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary @@ -160,6 +160,12 @@ def dcg_at_k(r, k): >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 1, method=1) 3.0 >>> dcg_at_k(r, 2) 5.0 >>> dcg_at_k(r, 2, method=1) 4.2618595071429155 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) @@ -168,17 +174,25 @@ def dcg_at_k(r, k): Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0. def ndcg_at_k(r, k, method=0): """Score is normalized discounted cumulative gain (ndcg) Relevance is positive real values. Can use binary @@ -192,6 +206,8 @@ def ndcg_at_k(r, k): >>> r = [2, 1, 2, 0] >>> ndcg_at_k(r, 4) 0.9203032077642922 >>> ndcg_at_k(r, 4, method=1) 0.96519546960144276 >>> ndcg_at_k([0], 1) 0.0 >>> ndcg_at_k([1], 2) @@ -200,14 +216,17 @@ def ndcg_at_k(r, k): Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Normalized discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max if __name__ == "__main__": -
Brandyn A. White revised this gist
Sep 15, 2012 . 1 changed file with 0 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -8,7 +8,6 @@ Learning to Rank for Information Retrieval (Tie-Yan Liu) """ import numpy as np def mean_reciprocal_rank(rs): -
Brandyn A. White revised this gist
Sep 15, 2012 . 1 changed file with 1 addition and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -203,7 +203,7 @@ def ndcg_at_k(r, k): (first element is the first item) Returns: Normalized discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k) if not dcg_max: -
Brandyn A. White revised this gist
Sep 15, 2012 . 1 changed file with 71 additions and 4 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -3,9 +3,12 @@ Useful Resources: http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt http://www.nii.ac.jp/TechReports/05-014E.pdf http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf Learning to Rank for Information Retrieval (Tie-Yan Liu) """ import numpy as np np.seterr(all='raise') def mean_reciprocal_rank(rs): @@ -93,10 +96,10 @@ def precision_at_k(r, k): ValueError: len(r) must be >= k """ assert k >= 1 r = np.asarray(r)[:k] != 0 if r.size != k: raise ValueError('Relevance score length < k') return np.mean(r) def average_precision(r): @@ -119,7 +122,10 @@ def average_precision(r): Average precision """ r = np.asarray(r) != 0 out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]] if not out: return 0. return np.mean(out) def mean_average_precision(rs): @@ -144,6 +150,67 @@ def mean_average_precision(rs): return np.mean([average_precision(r) for r in rs]) def dcg_at_k(r, k): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) return 0. def ndcg_at_k(r, k): """Score is normalized discounted cumulative gain (ndcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> ndcg_at_k(r, 1) 1.0 >>> r = [2, 1, 2, 0] >>> ndcg_at_k(r, 4) 0.9203032077642922 >>> ndcg_at_k([0], 1) 0.0 >>> ndcg_at_k([1], 2) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k) if not dcg_max: return 0. return dcg_at_k(r, k) / dcg_max if __name__ == "__main__": import doctest doctest.testmod() -
Brandyn A. White revised this gist
Sep 15, 2012 . 1 changed file with 134 additions and 7 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,22 +1,149 @@ """Information Retrieval metrics Useful Resources: http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt http://www.nii.ac.jp/TechReports/05-014E.pdf Learning to Rank for Information Retrieval (Tie-Yan Liu) """ import numpy as np def mean_reciprocal_rank(rs): """Score is reciprocal of the rank of the first relevant item First element is 'rank 1'. Relevance is binary (nonzero is relevant). Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.61111111111111105 >>> rs = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]]) >>> mean_reciprocal_rank(rs) 0.5 >>> rs = [[0, 0, 0, 1], [1, 0, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.75 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean reciprocal rank """ rs = (np.asarray(r).nonzero()[0] for r in rs) return np.mean([1. / (r[0] + 1) if r.size else 0. for r in rs]) def r_precision(r): """Score is precision after all relevant documents have been retrieved Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> r_precision(r) 0.33333333333333331 >>> r = [0, 1, 0] >>> r_precision(r) 0.5 >>> r = [1, 0, 0] >>> r_precision(r) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: R Precision """ r = np.asarray(r) != 0 z = r.nonzero()[0] if not z.size: return 0. return np.mean(r[:z[-1] + 1]) def precision_at_k(r, k): """Score is precision @ k Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> precision_at_k(r, 1) 0.0 >>> precision_at_k(r, 2) 0.0 >>> precision_at_k(r, 3) 0.33333333333333331 >>> precision_at_k(r, 4) Traceback (most recent call last): File "<stdin>", line 1, in ? ValueError: Relevance score length < k Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Precision @ k Raises: ValueError: len(r) must be >= k """ assert k >= 1 r = np.asarray(r) != 0 if r.size < k: raise ValueError('Relevance score length < k') return np.mean(r[:k]) def average_precision(r): """Score is average precision (area under PR curve) Relevance is binary (nonzero is relevant). >>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1] >>> delta_r = 1. / sum(r) >>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y]) 0.7833333333333333 >>> average_precision(r) 0.78333333333333333 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Average precision """ r = np.asarray(r) != 0 return np.nan_to_num(np.mean([precision_at_k(r, k + 1) for k in range(r.size) if r[k]])) def mean_average_precision(rs): """Score is mean average precision Relevance is binary (nonzero is relevant). >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]] >>> mean_average_precision(rs) 0.78333333333333333 >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1], [0]] >>> mean_average_precision(rs) 0.39166666666666666 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean average precision """ return np.mean([average_precision(r) for r in rs]) if __name__ == "__main__": import doctest doctest.testmod() -
bwhite created this gist
Sep 15, 2012 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,22 @@ def mean_reciprocal_rank(rs): """Score is reciprocal of the rank of the first relevant item First element is "rank 1" so as to not result in infinity. Relevance is binary (nonzero is relevant). Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.6111111111111112 Args: rs: List of relevance scores in rank order (first element is the first item) Returns: Mean reciprocal rank """ return np.mean([1. / (np.asfarray(r).nonzero()[0] + 1) for r in rs]) def rank_precision_k(): pass