Last active
November 23, 2020 14:59
-
-
Save michimani/3c5c43b2566c4547e7b749262d62b673 to your computer and use it in GitHub Desktop.
Revisions
-
Yoshihiro Ito revised this gist
Aug 29, 2020 . No changes.There are no files selected for viewing
-
Yoshihiro Ito created this gist
Aug 29, 2020 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,118 @@ import boto3 import cv2 import datetime import hashlib import json import os import re import sys import time TMP_DIR = './tmp' THUMBNAIL_DIR = './char_thumb' reko = boto3.client('rekognition') target_area = { 'A': {'X': 0.57187, 'Y': 0.1875}, 'B': {'X': 0.9, 'Y': 0.1875}, 'C': {'X': 0.9, 'Y': 0.43125}, 'D': {'X': 0.57187, 'Y': 0.43125}, } character_area = { 'A': {'X': 911, 'Y': 474}, 'B': {'X': 959, 'Y': 474}, 'C': {'X': 959, 'Y': 522}, 'D': {'X': 911, 'Y': 522}, } def get_datetime_from_image_path(image_path): datetime_part = re.sub(r'.*(\d{16}).*', r'\1', image_path)[:14] dt = datetime.datetime.strptime(datetime_part, '%Y%m%d%H%M%S') datetime_str = '{0:%Y-%m-%d %H:%M:%S}'.format(dt) return datetime_str def get_character_hash(image_path): img = cv2.imread(image_path) trimed = img[ character_area['A']['Y']: character_area['D']['Y'], character_area['A']['X']: character_area['C']['X']] trimed_bytes = trimed.tobytes() trimed_hash = hashlib.sha1(trimed_bytes).hexdigest() thumb_path = f'{THUMBNAIL_DIR}/{trimed_hash}.jpg' if os.path.exists(thumb_path) is False: cv2.imwrite(thumb_path, trimed) return trimed_hash def get_bytes_of_image(image_path): img = cv2.imread(image_path) trimed = img[ 360: 720, 640: 1280 ] ts = str(time.time()) trimed_tmp_path = f'{TMP_DIR}/{ts}.jpg' cv2.imwrite(trimed_tmp_path, trimed) with open(trimed_tmp_path, mode='rb') as img: image_bytes = img.read() os.remove(trimed_tmp_path) return image_bytes def detect_text(image_path): image_bytes = get_bytes_of_image(image_path) return reko.detect_text( Image={ 'Bytes': image_bytes } ) def get_smash_power(image_path): smash_power = 0 detect_res = detect_text(image_path) for detected in detect_res['TextDetections']: polygon = detected['Geometry']['Polygon'] if polygon[0]['X'] > target_area['A']['X'] and polygon[0]['Y'] > target_area['A']['Y'] \ and polygon[1]['X'] < target_area['B']['X'] and polygon[1]['Y'] > target_area['B']['Y'] \ and polygon[2]['X'] < target_area['C']['X'] and polygon[2]['Y'] < target_area['C']['Y'] \ and polygon[3]['X'] > target_area['D']['X'] and polygon[3]['Y'] < target_area['D']['Y']: smash_power = int(detected['DetectedText'].replace(',', '')) return smash_power def generate_smash_power_item(image_path): # Datetime of data datetime_str = get_datetime_from_image_path(image_path) # Get Smash Power via Amazon Rekognition smash_power = get_smash_power(image_path) # Get character hash (and Generate character thumbnail) character_hash = get_character_hash(image_path) return { 'character_hash': character_hash, 'capture_datetime': datetime_str, 'power': smash_power } if __name__ == '__main__': image_path = sys.argv[1] smash_power_item = generate_smash_power_item(image_path) print(json.dumps(smash_power_item, indent=2, ensure_ascii=False))