Last active
September 23, 2020 06:54
-
-
Save mineshpatel1/209038c64c19d5e78e0a878320797631 to your computer and use it in GitHub Desktop.
Revisions
-
mineshpatel1 revised this gist
Mar 26, 2020 . 1 changed file with 2 additions and 2 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -90,15 +90,15 @@ def pre_process_image(img, skip_dilate=False): if not skip_dilate: # Dilate the image to increase the size of the grid lines. kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]], np.uint8) proc = cv2.dilate(proc, kernel) return proc def find_corners_of_largest_polygon(img): """Finds the 4 extreme corners of the largest contour in the image.""" contours, h = cv2.findContours(img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find contours contours = sorted(contours, key=cv2.contourArea, reverse=True) # Sort by area, descending polygon = contours[0] # Largest image -
mineshpatel1 created this gist
Oct 18, 2017 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,314 @@ import cv2 import operator import numpy as np from matplotlib import pyplot as plt def plot_many_images(images, titles, rows=1, columns=2): """Plots each image in a given list as a grid structure. using Matplotlib.""" for i, image in enumerate(images): plt.subplot(rows, columns, i+1) plt.imshow(image, 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) # Hide tick marks plt.show() def show_image(img): """Shows an image until any key is pressed""" cv2.imshow('image', img) # Display the image cv2.waitKey(0) # Wait for any key to be pressed (with the image window active) cv2.destroyAllWindows() # Close all windows def show_digits(digits, colour=255): """Shows list of 81 extracted digits in a grid format""" rows = [] with_border = [cv2.copyMakeBorder(img.copy(), 1, 1, 1, 1, cv2.BORDER_CONSTANT, None, colour) for img in digits] for i in range(9): row = np.concatenate(with_border[i * 9:((i + 1) * 9)], axis=1) rows.append(row) show_image(np.concatenate(rows)) def convert_when_colour(colour, img): """Dynamically converts an image to colour if the input colour is a tuple and the image is grayscale.""" if len(colour) == 3: if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif img.shape[2] == 1: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return img def display_points(in_img, points, radius=5, colour=(0, 0, 255)): """Draws circular points on an image.""" img = in_img.copy() # Dynamically change to a colour image if necessary if len(colour) == 3: if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif img.shape[2] == 1: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for point in points: img = cv2.circle(img, tuple(int(x) for x in point), radius, colour, -1) show_image(img) return img def display_rects(in_img, rects, colour=(0, 0, 255)): """Displays rectangles on the image.""" img = convert_when_colour(colour, in_img.copy()) for rect in rects: img = cv2.rectangle(img, tuple(int(x) for x in rect[0]), tuple(int(x) for x in rect[1]), colour) show_image(img) return img def display_contours(in_img, contours, colour=(0, 0, 255), thickness=2): """Displays contours on the image.""" img = convert_when_colour(colour, in_img.copy()) img = cv2.drawContours(img, contours, -1, colour, thickness) show_image(img) def pre_process_image(img, skip_dilate=False): """Uses a blurring function, adaptive thresholding and dilation to expose the main features of an image.""" # Gaussian blur with a kernal size (height, width) of 9. # Note that kernal sizes must be positive and odd and the kernel must be square. proc = cv2.GaussianBlur(img.copy(), (9, 9), 0) # Adaptive threshold using 11 nearest neighbour pixels proc = cv2.adaptiveThreshold(proc, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Invert colours, so gridlines have non-zero pixel values. # Necessary to dilate the image, otherwise will look like erosion instead. proc = cv2.bitwise_not(proc, proc) if not skip_dilate: # Dilate the image to increase the size of the grid lines. kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]]) proc = cv2.dilate(proc, kernel) return proc def find_corners_of_largest_polygon(img): """Finds the 4 extreme corners of the largest contour in the image.""" _, contours, h = cv2.findContours(img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find contours contours = sorted(contours, key=cv2.contourArea, reverse=True) # Sort by area, descending polygon = contours[0] # Largest image # Use of `operator.itemgetter` with `max` and `min` allows us to get the index of the point # Each point is an array of 1 coordinate, hence the [0] getter, then [0] or [1] used to get x and y respectively. # Bottom-right point has the largest (x + y) value # Top-left has point smallest (x + y) value # Bottom-left point has smallest (x - y) value # Top-right point has largest (x - y) value bottom_right, _ = max(enumerate([pt[0][0] + pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) top_left, _ = min(enumerate([pt[0][0] + pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) bottom_left, _ = min(enumerate([pt[0][0] - pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) top_right, _ = max(enumerate([pt[0][0] - pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) # Return an array of all 4 points using the indices # Each point is in its own array of one coordinate return [polygon[top_left][0], polygon[top_right][0], polygon[bottom_right][0], polygon[bottom_left][0]] def distance_between(p1, p2): """Returns the scalar distance between two points""" a = p2[0] - p1[0] b = p2[1] - p1[1] return np.sqrt((a ** 2) + (b ** 2)) def crop_and_warp(img, crop_rect): """Crops and warps a rectangular section from an image into a square of similar size.""" # Rectangle described by top left, top right, bottom right and bottom left points top_left, top_right, bottom_right, bottom_left = crop_rect[0], crop_rect[1], crop_rect[2], crop_rect[3] # Explicitly set the data type to float32 or `getPerspectiveTransform` will throw an error src = np.array([top_left, top_right, bottom_right, bottom_left], dtype='float32') # Get the longest side in the rectangle side = max([ distance_between(bottom_right, top_right), distance_between(top_left, bottom_left), distance_between(bottom_right, bottom_left), distance_between(top_left, top_right) ]) # Describe a square with side of the calculated length, this is the new perspective we want to warp to dst = np.array([[0, 0], [side - 1, 0], [side - 1, side - 1], [0, side - 1]], dtype='float32') # Gets the transformation matrix for skewing the image to fit a square by comparing the 4 before and after points m = cv2.getPerspectiveTransform(src, dst) # Performs the transformation on the original image return cv2.warpPerspective(img, m, (int(side), int(side))) def infer_grid(img): """Infers 81 cell grid from a square image.""" squares = [] side = img.shape[:1] side = side[0] / 9 # Note that we swap j and i here so the rectangles are stored in the list reading left-right instead of top-down. for j in range(9): for i in range(9): p1 = (i * side, j * side) # Top left corner of a bounding box p2 = ((i + 1) * side, (j + 1) * side) # Bottom right corner of bounding box squares.append((p1, p2)) return squares def cut_from_rect(img, rect): """Cuts a rectangle from an image using the top left and bottom right points.""" return img[int(rect[0][1]):int(rect[1][1]), int(rect[0][0]):int(rect[1][0])] def scale_and_centre(img, size, margin=0, background=0): """Scales and centres an image onto a new background square.""" h, w = img.shape[:2] def centre_pad(length): """Handles centering for a given length that may be odd or even.""" if length % 2 == 0: side1 = int((size - length) / 2) side2 = side1 else: side1 = int((size - length) / 2) side2 = side1 + 1 return side1, side2 def scale(r, x): return int(r * x) if h > w: t_pad = int(margin / 2) b_pad = t_pad ratio = (size - margin) / h w, h = scale(ratio, w), scale(ratio, h) l_pad, r_pad = centre_pad(w) else: l_pad = int(margin / 2) r_pad = l_pad ratio = (size - margin) / w w, h = scale(ratio, w), scale(ratio, h) t_pad, b_pad = centre_pad(h) img = cv2.resize(img, (w, h)) img = cv2.copyMakeBorder(img, t_pad, b_pad, l_pad, r_pad, cv2.BORDER_CONSTANT, None, background) return cv2.resize(img, (size, size)) def find_largest_feature(inp_img, scan_tl=None, scan_br=None): """ Uses the fact the `floodFill` function returns a bounding box of the area it filled to find the biggest connected pixel structure in the image. Fills this structure in white, reducing the rest to black. """ img = inp_img.copy() # Copy the image, leaving the original untouched height, width = img.shape[:2] max_area = 0 seed_point = (None, None) if scan_tl is None: scan_tl = [0, 0] if scan_br is None: scan_br = [width, height] # Loop through the image for x in range(scan_tl[0], scan_br[0]): for y in range(scan_tl[1], scan_br[1]): # Only operate on light or white squares if img.item(y, x) == 255 and x < width and y < height: # Note that .item() appears to take input as y, x area = cv2.floodFill(img, None, (x, y), 64) if area[0] > max_area: # Gets the maximum bound area which should be the grid max_area = area[0] seed_point = (x, y) # Colour everything grey (compensates for features outside of our middle scanning range for x in range(width): for y in range(height): if img.item(y, x) == 255 and x < width and y < height: cv2.floodFill(img, None, (x, y), 64) mask = np.zeros((height + 2, width + 2), np.uint8) # Mask that is 2 pixels bigger than the image # Highlight the main feature if all([p is not None for p in seed_point]): cv2.floodFill(img, mask, seed_point, 255) top, bottom, left, right = height, 0, width, 0 for x in range(width): for y in range(height): if img.item(y, x) == 64: # Hide anything that isn't the main feature cv2.floodFill(img, mask, (x, y), 0) # Find the bounding parameters if img.item(y, x) == 255: top = y if y < top else top bottom = y if y > bottom else bottom left = x if x < left else left right = x if x > right else right bbox = [[left, top], [right, bottom]] return img, np.array(bbox, dtype='float32'), seed_point def extract_digit(img, rect, size): """Extracts a digit (if one exists) from a Sudoku square.""" digit = cut_from_rect(img, rect) # Get the digit box from the whole square # Use fill feature finding to get the largest feature in middle of the box # Margin used to define an area in the middle we would expect to find a pixel belonging to the digit h, w = digit.shape[:2] margin = int(np.mean([h, w]) / 2.5) _, bbox, seed = find_largest_feature(digit, [margin, margin], [w - margin, h - margin]) digit = cut_from_rect(digit, bbox) # Scale and pad the digit so that it fits a square of the digit size we're using for machine learning w = bbox[1][0] - bbox[0][0] h = bbox[1][1] - bbox[0][1] # Ignore any small bounding boxes if w > 0 and h > 0 and (w * h) > 100 and len(digit) > 0: return scale_and_centre(digit, size, 4) else: return np.zeros((size, size), np.uint8) def get_digits(img, squares, size): """Extracts digits from their cells and builds an array""" digits = [] img = pre_process_image(img.copy(), skip_dilate=True) for square in squares: digits.append(extract_digit(img, square, size)) return digits def parse_grid(path): original = cv2.imread(path, cv2.IMREAD_GRAYSCALE) processed = pre_process_image(original) corners = find_corners_of_largest_polygon(processed) cropped = crop_and_warp(original, corners) squares = infer_grid(cropped) digits = get_digits(cropped, squares, 28) show_digits(digits) def main(): parse_grid('images/1-original.jpg') if __name__ == '__main__': main()