Skip to content

Instantly share code, notes, and snippets.

@monir-zaman
Created July 12, 2018 18:44
Show Gist options
  • Select an option

  • Save monir-zaman/4c1eef833c05c79ff78f38a895f7d61d to your computer and use it in GitHub Desktop.

Select an option

Save monir-zaman/4c1eef833c05c79ff78f38a895f7d61d to your computer and use it in GitHub Desktop.

Revisions

  1. @Moniruzzaman-Monir Moniruzzaman-Monir created this gist Jul 12, 2018.
    33 changes: 33 additions & 0 deletions SVM_On_My_CSV.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,33 @@
    # -*- coding: utf-8 -*-
    """
    Spyder Editor
    This is a temporary script file.
    """

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import matplotlib.pyplot as plt
    get_ipython().magic('matplotlib inline')
    #import os
    mydataset=pd.read_csv('student_data.csv')

    #mydataset.head()
    #sns.pairplot(data=mydataset, hue='species')
    from sklearn.model_selection import train_test_split
    x=mydataset.iloc[:,0:19]

    y=mydataset.iloc[:,20]
    print("y head is : \n")
    print(y.head())
    x_train,x_test, y_train, y_test=train_test_split(x,y,test_size=0.30)
    from sklearn.svm import SVC
    model=SVC()
    model.fit(x_train, y_train)
    pred=model.predict(x_test)
    from sklearn.metrics import classification_report, confusion_matrix
    print(confusion_matrix(y_test,pred))
    print(classification_report(y_test, pred))