Skip to content

Instantly share code, notes, and snippets.

View mrdvince's full-sized avatar
:octocat:
Oxidizing

Vince mrdvince

:octocat:
Oxidizing
View GitHub Profile
def train(dataloader, model, optimizer, device, scheduler=None):
# scaler -> an instance of the GradScaler object
scaler = amp.GradScaler()
model.train()
for batch_idx, d in enumerate(dataloader):
ids = d['ids']
token_type_ids = d['token_type_ids']
mask = d['mask']
targets = d['targets']
pytorch torchvision cudatoolkit=10.1 -c pytorch-nightly
!wget -c https://repo.anaconda.com/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh
!chmod +x Miniconda3-4.5.4-Linux-x86_64.sh
!bash ./Miniconda3-4.5.4-Linux-x86_64.sh -b -f -p /usr/local
# update 1
!conda install -q -y --prefix /usr/local python=3.6 pytorch torchvision cudatoolkit=10.1 -c pytorch-nightly
# update 2
import sys
sys.path.append('/usr/local/lib/python3.6/site-packages')
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
val rollButton: Button = findViewById(R.id.roll_button)
diceImage = findViewById(R.id.dice_image)
rollButton.setOnClickListener {
rollDice()
}
}
# Query function
def query(db):
return db.sum()
full_db_result = query(db)
sensitivity = 0
for pdb in pdbs:
pdb_result = query(pdb)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
We can make this file beautiful and searchable if this error is corrected: It looks like row 2 should actually have 102 columns, instead of 53 in line 1.
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102
pink primrose,hard-leaved pocket orchid,canterbury bells,sweet pea,english marigold,tiger lily,moon orchid,bird of paradise,monkshood,globe thistle,snapdragon,colt's foot,king protea,spear thistle,yellow iris,globe-flower,purple coneflower,peruvian lily,balloon flower,giant white arum lily,fire lily,pincushion flower,fritillary,red ginger,grape hyacinth,corn poppy,prince of wales feathers,stemless gentian,artichoke,sweet william,carnation,garden phlox,love in the mist,mexican aster,alpine sea holly,ruby-lipped cattleya,cape flower,great masterwort,siam tulip,lenten rose,barbeton daisy,daffodil,sword lily,poinsettia,bolero deep blue,wallflower,marigold,buttercup,oxeye daisy,common dandelion,petunia,wild pansy,primul
We can make this file beautiful and searchable if this error is corrected: It looks like row 2 should actually have 102 columns, instead of 53 in line 1.
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102
pink primrose,hard-leaved pocket orchid,canterbury bells,sweet pea,english marigold,tiger lily,moon orchid,bird of paradise,monkshood,globe thistle,snapdragon,colt's foot,king protea,spear thistle,yellow iris,globe-flower,purple coneflower,peruvian lily,balloon flower,giant white arum lily,fire lily,pincushion flower,fritillary,red ginger,grape hyacinth,corn poppy,prince of wales feathers,stemless gentian,artichoke,sweet william,carnation,garden phlox,love in the mist,mexican aster,alpine sea holly,ruby-lipped cattleya,cape flower,great masterwort,siam tulip,lenten rose,barbeton daisy,daffodil,sword lily,poinsettia,bolero deep blue,wallflower,marigold,buttercup,oxeye daisy,common dandelion,petunia,wild pansy,primul
# model:
model = YourModelHere()
# params you need to specify:
epochs = 5
train_loader, val_loader = # put your data loader here
loss_function = nn.CrossEntropyLoss() # your loss function, cross entropy works well for multi-class problems
# optimizer, I've used Adadelta, as it wokrs well without any magic numbers
optimizer = optim.Adadelta(model.parameters())
ds.owner
<VirtualWorker id:me #tensors:0>
# get the objects from remote machine
remote_ds.get()
tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])