Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save mrejacob/8d0e912087c80c64987de1aade7548d9 to your computer and use it in GitHub Desktop.
Save mrejacob/8d0e912087c80c64987de1aade7548d9 to your computer and use it in GitHub Desktop.

Revisions

  1. @chriddyp chriddyp created this gist Jun 9, 2017.
    163 changes: 163 additions & 0 deletions dash_crossfilter_example.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,163 @@
    import dash
    import dash_core_components as dcc
    import dash_html_components as html
    import plotly.graph_objs as go
    import pandas as pd

    app = dash.Dash()

    df = pd.read_csv(
    'https://gist.github.com/chriddyp/'
    'cb5392c35661370d95f300086accea51/raw/'
    '8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/'
    'indicators.csv')

    available_indicators = df['Indicator Name'].unique()

    app.layout = html.Div([
    html.Div([

    html.Div([
    dcc.Dropdown(
    id='crossfilter-xaxis-column',
    options=[{'label': i, 'value': i} for i in available_indicators],
    value='Fertility rate, total (births per woman)'
    ),
    dcc.RadioItems(
    id='crossfilter-xaxis-type',
    options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
    value='Linear',
    labelStyle={'display': 'inline-block'}
    )
    ],
    style={'width': '49%', 'display': 'inline-block'}),

    html.Div([
    dcc.Dropdown(
    id='crossfilter-yaxis-column',
    options=[{'label': i, 'value': i} for i in available_indicators],
    value='Life expectancy at birth, total (years)'
    ),
    dcc.RadioItems(
    id='crossfilter-yaxis-type',
    options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
    value='Linear',
    labelStyle={'display': 'inline-block'}
    )
    ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})
    ], style={
    'borderBottom': 'thin lightgrey solid',
    'backgroundColor': 'rgb(250, 250, 250)',
    'padding': '10px 5px'
    }),

    html.Div([
    dcc.Graph(
    id='crossfilter-indicator-scatter',
    hoverData={'points': [{'customdata': 'Japan'}]}
    )
    ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),
    html.Div([
    dcc.Graph(id='x-time-series'),
    dcc.Graph(id='y-time-series'),
    ], style={'display': 'inline-block', 'width': '49%'}),

    html.Div(dcc.Slider(
    id='crossfilter-year--slider',
    min=df['Year'].min(),
    max=df['Year'].max(),
    value=df['Year'].max(),
    step=None,
    marks={str(year): str(year) for year in df['Year'].unique()}
    ), style={'width': '49%', 'padding': '0px 20px 20px 20px'})
    ])

    @app.callback(
    dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),
    [dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
    dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
    dash.dependencies.Input('crossfilter-xaxis-type', 'value'),
    dash.dependencies.Input('crossfilter-yaxis-type', 'value'),
    dash.dependencies.Input('crossfilter-year--slider', 'value')])
    def update_graph(xaxis_column_name, yaxis_column_name,
    xaxis_type, yaxis_type,
    year_value):
    dff = df[df['Year'] == year_value]

    return {
    'data': [go.Scatter(
    x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
    y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
    text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
    customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
    mode='markers',
    marker={
    'size': 15,
    'opacity': 0.5,
    'line': {'width': 0.5, 'color': 'white'}
    }
    )],
    'layout': go.Layout(
    xaxis={
    'title': xaxis_column_name,
    'type': 'linear' if xaxis_type == 'Linear' else 'log'
    },
    yaxis={
    'title': yaxis_column_name,
    'type': 'linear' if yaxis_type == 'Linear' else 'log'
    },
    margin={'l': 40, 'b': 30, 't': 10, 'r': 0},
    height=450,
    hovermode='closest'
    )
    }

    def create_time_series(dff, axis_type, title):
    return {
    'data': [go.Scatter(
    x=dff['Year'],
    y=dff['Value'],
    mode='lines+markers'
    )],
    'layout': {
    'height': 225,
    'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10},
    'annotations': [{
    'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom',
    'xref': 'paper', 'yref': 'paper', 'showarrow': False,
    'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)',
    'text': title
    }],
    'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'},
    'xaxis': {'showgrid': False}
    }
    }

    @app.callback(
    dash.dependencies.Output('x-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
    dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
    dash.dependencies.Input('crossfilter-xaxis-type', 'value')])
    def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
    country_name = hoverData['points'][0]['customdata']
    dff = df[df['Country Name'] == country_name]
    dff = dff[dff['Indicator Name'] == xaxis_column_name]
    title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)
    return create_time_series(dff, axis_type, title)

    @app.callback(
    dash.dependencies.Output('y-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
    dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
    dash.dependencies.Input('crossfilter-yaxis-type', 'value')])
    def update_x_timeseries(hoverData, yaxis_column_name, axis_type):
    dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]
    dff = dff[dff['Indicator Name'] == yaxis_column_name]
    return create_time_series(dff, axis_type, yaxis_column_name)

    app.css.append_css({
    'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'
    })

    if __name__ == '__main__':
    app.run_server()