|
|
@@ -0,0 +1,163 @@ |
|
|
import dash |
|
|
import dash_core_components as dcc |
|
|
import dash_html_components as html |
|
|
import plotly.graph_objs as go |
|
|
import pandas as pd |
|
|
|
|
|
app = dash.Dash() |
|
|
|
|
|
df = pd.read_csv( |
|
|
'https://gist.github.com/chriddyp/' |
|
|
'cb5392c35661370d95f300086accea51/raw/' |
|
|
'8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/' |
|
|
'indicators.csv') |
|
|
|
|
|
available_indicators = df['Indicator Name'].unique() |
|
|
|
|
|
app.layout = html.Div([ |
|
|
html.Div([ |
|
|
|
|
|
html.Div([ |
|
|
dcc.Dropdown( |
|
|
id='crossfilter-xaxis-column', |
|
|
options=[{'label': i, 'value': i} for i in available_indicators], |
|
|
value='Fertility rate, total (births per woman)' |
|
|
), |
|
|
dcc.RadioItems( |
|
|
id='crossfilter-xaxis-type', |
|
|
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], |
|
|
value='Linear', |
|
|
labelStyle={'display': 'inline-block'} |
|
|
) |
|
|
], |
|
|
style={'width': '49%', 'display': 'inline-block'}), |
|
|
|
|
|
html.Div([ |
|
|
dcc.Dropdown( |
|
|
id='crossfilter-yaxis-column', |
|
|
options=[{'label': i, 'value': i} for i in available_indicators], |
|
|
value='Life expectancy at birth, total (years)' |
|
|
), |
|
|
dcc.RadioItems( |
|
|
id='crossfilter-yaxis-type', |
|
|
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], |
|
|
value='Linear', |
|
|
labelStyle={'display': 'inline-block'} |
|
|
) |
|
|
], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}) |
|
|
], style={ |
|
|
'borderBottom': 'thin lightgrey solid', |
|
|
'backgroundColor': 'rgb(250, 250, 250)', |
|
|
'padding': '10px 5px' |
|
|
}), |
|
|
|
|
|
html.Div([ |
|
|
dcc.Graph( |
|
|
id='crossfilter-indicator-scatter', |
|
|
hoverData={'points': [{'customdata': 'Japan'}]} |
|
|
) |
|
|
], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}), |
|
|
html.Div([ |
|
|
dcc.Graph(id='x-time-series'), |
|
|
dcc.Graph(id='y-time-series'), |
|
|
], style={'display': 'inline-block', 'width': '49%'}), |
|
|
|
|
|
html.Div(dcc.Slider( |
|
|
id='crossfilter-year--slider', |
|
|
min=df['Year'].min(), |
|
|
max=df['Year'].max(), |
|
|
value=df['Year'].max(), |
|
|
step=None, |
|
|
marks={str(year): str(year) for year in df['Year'].unique()} |
|
|
), style={'width': '49%', 'padding': '0px 20px 20px 20px'}) |
|
|
]) |
|
|
|
|
|
@app.callback( |
|
|
dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'), |
|
|
[dash.dependencies.Input('crossfilter-xaxis-column', 'value'), |
|
|
dash.dependencies.Input('crossfilter-yaxis-column', 'value'), |
|
|
dash.dependencies.Input('crossfilter-xaxis-type', 'value'), |
|
|
dash.dependencies.Input('crossfilter-yaxis-type', 'value'), |
|
|
dash.dependencies.Input('crossfilter-year--slider', 'value')]) |
|
|
def update_graph(xaxis_column_name, yaxis_column_name, |
|
|
xaxis_type, yaxis_type, |
|
|
year_value): |
|
|
dff = df[df['Year'] == year_value] |
|
|
|
|
|
return { |
|
|
'data': [go.Scatter( |
|
|
x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'], |
|
|
y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'], |
|
|
text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], |
|
|
customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], |
|
|
mode='markers', |
|
|
marker={ |
|
|
'size': 15, |
|
|
'opacity': 0.5, |
|
|
'line': {'width': 0.5, 'color': 'white'} |
|
|
} |
|
|
)], |
|
|
'layout': go.Layout( |
|
|
xaxis={ |
|
|
'title': xaxis_column_name, |
|
|
'type': 'linear' if xaxis_type == 'Linear' else 'log' |
|
|
}, |
|
|
yaxis={ |
|
|
'title': yaxis_column_name, |
|
|
'type': 'linear' if yaxis_type == 'Linear' else 'log' |
|
|
}, |
|
|
margin={'l': 40, 'b': 30, 't': 10, 'r': 0}, |
|
|
height=450, |
|
|
hovermode='closest' |
|
|
) |
|
|
} |
|
|
|
|
|
def create_time_series(dff, axis_type, title): |
|
|
return { |
|
|
'data': [go.Scatter( |
|
|
x=dff['Year'], |
|
|
y=dff['Value'], |
|
|
mode='lines+markers' |
|
|
)], |
|
|
'layout': { |
|
|
'height': 225, |
|
|
'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10}, |
|
|
'annotations': [{ |
|
|
'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom', |
|
|
'xref': 'paper', 'yref': 'paper', 'showarrow': False, |
|
|
'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)', |
|
|
'text': title |
|
|
}], |
|
|
'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'}, |
|
|
'xaxis': {'showgrid': False} |
|
|
} |
|
|
} |
|
|
|
|
|
@app.callback( |
|
|
dash.dependencies.Output('x-time-series', 'figure'), |
|
|
[dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), |
|
|
dash.dependencies.Input('crossfilter-xaxis-column', 'value'), |
|
|
dash.dependencies.Input('crossfilter-xaxis-type', 'value')]) |
|
|
def update_y_timeseries(hoverData, xaxis_column_name, axis_type): |
|
|
country_name = hoverData['points'][0]['customdata'] |
|
|
dff = df[df['Country Name'] == country_name] |
|
|
dff = dff[dff['Indicator Name'] == xaxis_column_name] |
|
|
title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name) |
|
|
return create_time_series(dff, axis_type, title) |
|
|
|
|
|
@app.callback( |
|
|
dash.dependencies.Output('y-time-series', 'figure'), |
|
|
[dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), |
|
|
dash.dependencies.Input('crossfilter-yaxis-column', 'value'), |
|
|
dash.dependencies.Input('crossfilter-yaxis-type', 'value')]) |
|
|
def update_x_timeseries(hoverData, yaxis_column_name, axis_type): |
|
|
dff = df[df['Country Name'] == hoverData['points'][0]['customdata']] |
|
|
dff = dff[dff['Indicator Name'] == yaxis_column_name] |
|
|
return create_time_series(dff, axis_type, yaxis_column_name) |
|
|
|
|
|
app.css.append_css({ |
|
|
'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css' |
|
|
}) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
app.run_server() |