Created
April 27, 2024 06:51
-
-
Save mzbac/c10ba6b8cad89942c8924a27e82a1455 to your computer and use it in GitHub Desktop.
Revisions
-
mzbac created this gist
Apr 27, 2024 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,45 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,BitsAndBytesConfig from datasets import load_dataset model_name ="meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) dataset = load_dataset("glaiveai/glaive-function-calling-v2",split="train") def formatting_prompts_func(example): output_texts = [] for i in range(len(example['system'])): messages = [ { "role": "system", "content": example['system'][i][len("SYSTEM:"):].strip(), }, ] conversations = example['chat'][i].split("<|endoftext|>") for message in conversations: message = message.strip() if message: if "USER:" in message: user_content = message.split("ASSISTANT:")[0].strip() messages.append({"role": "user", "content": user_content[5:].strip()}) if "ASSISTANT:" in message: assistant_content = message.split("ASSISTANT:")[1].strip() messages.append({"role": "assistant", "content": assistant_content}) elif message.startswith("FUNCTION RESPONSE:"): function_response = message[18:].strip() if "ASSISTANT:" in function_response: function_content, assistant_content = function_response.split("ASSISTANT:") messages.append({"role": "user", "content": function_content.strip()}) messages.append({"role": "assistant", "content": assistant_content.strip()}) else: messages.append({"role": "user", "content": function_response}) text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) output_texts.append(text) return {"text": output_texts} dataset = dataset.map(formatting_prompts_func, batched=True) dataset = dataset.remove_columns(["system", "chat"]) dataset.push_to_hub("mzbac/glaive-function-calling-v2-llama-3-format")