Created
          July 16, 2015 03:59 
        
      - 
      
- 
        Save nerdalert/9422fe6fba9d89dfe6b6 to your computer and use it in GitHub Desktop. 
Revisions
- 
        Brent Salisbury created this gist Jul 16, 2015 .There are no files selected for viewingThis file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,639 @@ # Go Cheat Sheet # Index 1. [Basic Syntax](#basic-syntax) 2. [Operators](#operators) * [Arithmetic](#arithmetic) * [Comparison](#comparison) * [Logical](#logical) * [Other](#other) 3. [Declarations](#declarations) 4. [Functions](#functions) * [Functions as values and closures](#functions-as-values-and-closures) * [Variadic Functions](#variadic-functions) 5. [Built-in Types](#built-in-types) 6. [Type Conversions](#type-conversions) 7. [Packages](#packages) 8. [Control structures](#control-structures) * [If](#if) * [Loops](#loops) * [Switch](#switch) 9. [Arrays, Slices, Ranges](#arrays-slices-ranges) * [Arrays](#arrays) * [Slices](#slices) * [Operations on Arrays and Slices](#operations-on-arrays-and-slices) 10. [Maps](#maps) 11. [Structs](#structs) 12. [Pointers](#pointers) 13. [Interfaces](#interfaces) 14. [Embedding](#embedding) 15. [Errors](#errors) 16. [Concurrency](#concurrency) * [Goroutines](#goroutines) * [Channels](#channels) * [Channel Axioms](#channel-axioms) 17. [Snippets](#snippets) * [Http-Server](#http-server) ## Credits Most example code taken from [A Tour of Go](http://tour.golang.org/), which is an excellent introduction to Go. If you're new to Go, do that tour. Seriously. ## Go in a Nutshell * Imperative language * Statically typed * Syntax similar to Java/C/C++, but less parantheses and no semicolons * Compiles to native code (no JVM) * No classes, but structs with methods * Interfaces * No implementation inheritance. There's [type embedding](http://golang.org/doc/effective%5Fgo.html#embedding), though. * Functions are first class citizens * Functions can return multiple values * Go has closures * Pointers, but not pointer arithmetic * Built-in concurrency primitives: Goroutines and Channels # Basic Syntax ## Hello World File `hello.go`: ```go package main import "fmt" func main() { fmt.Println("Hello Go") } ``` `$ go run hello.go` ## Operators ### Arithmetic |Operator|Description| |--------|-----------| |`+`|addition| |`-`|subtraction| |`*`|multiplication| |`/`|quotient| |`%`|remainder| |`&`|bitwise and| |`|`|bitwise or| |`^`|bitwise xor| |`&^`|bit clear (and not)| |`<<`|left shift| |`>>`|right shift| ### Comparison |Operator|Description| |--------|-----------| |`==`|equal| |`!=`|not equal| |`<`|less than| |`<=`|less than or equal| |`>`|greater than| |`>=`|greater than or equal| ### Logical |Operator|Description| |--------|-----------| |`&&`|logical and| |`||`|logical or| |`!`|logical not| ### Other |Operator|Description| |--------|-----------| |`&`|address of / create pointer| |`*`|dereference pointer| |`<-`|send / receive operator (see 'Channels' below)| ## Declarations Type goes after identifier! ```go var foo int // declaration without initialization var foo int = 42 // declaration with initialization var foo, bar int = 42, 1302 // declare and init multiple vars at once var foo = 42 // type omitted, will be inferred foo := 42 // shorthand, only in func bodies, omit var keyword, type is always implicit const constant = "This is a constant" ``` ## Functions ```go // a simple function func functionName() {} // function with parameters (again, types go after identifiers) func functionName(param1 string, param2 int) {} // multiple parameters of the same type func functionName(param1, param2 int) {} // return type declaration func functionName() int { return 42 } // Can return multiple values at once func returnMulti() (int, string) { return 42, "foobar" } var x, str = returnMulti() // Return multiple named results simply by return func returnMulti2() (n int, s string) { n = 42 s = "foobar" // n and s will be returned return } var x, str = returnMulti2() ``` ### Functions As Values And Closures ```go func main() { // assign a function to a name add := func(a, b int) int { return a + b } // use the name to call the function fmt.Println(add(3, 4)) } // Closures, lexically scoped: Functions can access values that were // in scope when defining the function func scope() func() int{ outer_var := 2 foo := func() int { return outer_var} return foo } func another_scope() func() int{ // won't compile because outer_var and foo not defined in this scope outer_var = 444 return foo } // Closures: don't mutate outer vars, instead redefine them! func outer() (func() int, int) { outer_var := 2 inner := func() int { outer_var += 99 // attempt to mutate outer_var from outer scope return outer_var // => 101 (but outer_var is a newly redefined // variable visible only inside inner) } return inner, outer_var // => 101, 2 (outer_var is still 2, not mutated by foo!) } ``` ### Variadic Functions ```go func main() { fmt.Println(adder(1, 2, 3)) // 6 fmt.Println(adder(9, 9)) // 18 nums := []int{10, 20, 30} fmt.Println(adder(nums...)) // 60 } // By using ... before the type name of the last parameter you can indicate that it takes zero or more of those parameters. // The function is invoked like any other function except we can pass as many arguments as we want. func adder(args ...int) int { total := 0 for _, v := range args { // Iterates over the arguments whatever the number. total += v } return total } ``` ## Built-in Types ``` bool string int int8 int16 int32 int64 uint uint8 uint16 uint32 uint64 uintptr byte // alias for uint8 rune // alias for int32 ~= a character (Unicode code point) - very Viking float32 float64 complex64 complex128 ``` ## Type Conversions ```go var i int = 42 var f float64 = float64(i) var u uint = uint(f) // alternative syntax i := 42 f := float64(i) u := uint(f) ``` ## Packages * package declaration at top of every source file * executables are in package `main` * convention: package name == last name of import path (import path `math/rand` => package `rand`) * upper case identifier: exported (visible from other packages) * Lower case identifier: private (not visible from other packages) ## Control structures ### If ```go func main() { // Basic one if x > 0 { return x } else { return -x } // You can put one statement before the condition if a := b + c; a < 42 { return a } else { return a - 42 } // Type assertion inside if var val interface{} val = "foo" if str, ok := val.(string); ok { fmt.Println(str) } } ``` ### Loops ```go // There's only `for`, no `while`, no `until` for i := 1; i < 10; i++ { } for ; i < 10; { // while - loop } for i < 10 { // you can omit semicolons if there is only a condition } for { // you can omit the condition ~ while (true) } ``` ### Switch ```go // switch statement switch operatingSystem { case "darwin": fmt.Println("Mac OS Hipster") // cases break automatically, no fallthrough by default case "linux": fmt.Println("Linux Geek") default: // Windows, BSD, ... fmt.Println("Other") } // as with for and if, you can have an assignment statement before the switch value switch os := runtime.GOOS; os { case "darwin": ... } ``` ## Arrays, Slices, Ranges ### Arrays ```go var a [10]int // declare an int array with length 10. Array length is part of the type! a[3] = 42 // set elements i := a[3] // read elements // declare and initialize var a = [2]int{1, 2} a := [2]int{1, 2} //shorthand a := [...]int{1, 2} // elipsis -> Compiler figures out array length ``` ### Slices ```go var a []int // declare a slice - similar to an array, but length is unspecified var a = []int {1, 2, 3, 4} // declare and initialize a slice (backed by the array given implicitly) a := []int{1, 2, 3, 4} // shorthand chars := []string{0:"a", 2:"c", 1: "b"} // ["a", "b", "c"] var b = a[lo:hi] // creates a slice (view of the array) from index lo to hi-1 var b = a[1:4] // slice from index 1 to 3 var b = a[:3] // missing low index implies 0 var b = a[3:] // missing high index implies len(a) // create a slice with make a = make([]byte, 5, 5) // first arg length, second capacity a = make([]byte, 5) // capacity is optional // create a slice from an array x := [3]string{"Лайка", "Белка", "Стрелка"} s := x[:] // a slice referencing the storage of x ``` ### Operations on Arrays and Slices `len(a)` gives you the length of an array/a slice. It's a built-in function, not a attribute/method on the array. ```go // loop over an array/a slice for i, e := range a { // i is the index, e the element } // if you only need e: for _, e := range a { // e is the element } // ...and if you only need the index for i := range a { } // In Go pre-1.4, you'll get a compiler error if you're not using i and e. // Go 1.4 introduced a variable-free form, so that you can do this for range time.Tick(time.Second) { // do it once a sec } ``` ## Maps ```go var m map[string]int m = make(map[string]int) m["key"] = 42 fmt.Println(m["key"]) delete(m, "key") elem, ok := m["key"] // test if key "key" is present and retrieve it, if so // map literal var m = map[string]Vertex{ "Bell Labs": {40.68433, -74.39967}, "Google": {37.42202, -122.08408}, } ``` ## Structs There are no classes, only structs. Structs can have methods. ```go // A struct is a type. It's also a collection of fields // Declaration type Vertex struct { X, Y int } // Creating var v = Vertex{1, 2} var v = Vertex{X: 1, Y: 2} // Creates a struct by defining values with keys // Accessing members v.X = 4 // You can declare methods on structs. The struct you want to declare the // method on (the receiving type) comes between the the func keyword and // the method name. The struct is copied on each method call(!) func (v Vertex) Abs() float64 { return math.Sqrt(v.X*v.X + v.Y*v.Y) } // Call method v.Abs() // For mutating methods, you need to use a pointer (see below) to the Struct // as the type. With this, the struct value is not copied for the method call. func (v *Vertex) add(n float64) { v.X += n v.Y += n } ``` **Anonymous structs:** Cheaper and safer than using `map[string]interface{}`. ```go point := struct { X, Y int }{1, 2} ``` ## Pointers ```go p := Vertex{1, 2} // p is a Vertex q := &p // q is a pointer to a Vertex r := &Vertex{1, 2} // r is also a pointer to a Vertex // The type of a pointer to a Vertex is *Vertex var s *Vertex = new(Vertex) // new creates a pointer to a new struct instance ``` ## Interfaces ```go // interface declaration type Awesomizer interface { Awesomize() string } // types do *not* declare to implement interfaces type Foo struct {} // instead, types implicitly satisfy an interface if they implement all required methods func (foo Foo) Awesomize() string { return "Awesome!" } ``` ## Embedding There is no subclassing in Go. Instead, there is interface and struct embedding. ```go // ReadWriter implementations must satisfy both Reader and Writer type ReadWriter interface { Reader Writer } // Server exposes all the methods that Logger has type Server struct { Host string Port int *log.Logger } // initialize the embedded type the usual way server := &Server{"localhost", 80, log.New(...)} // methods implemented on the embedded struct are passed through server.Log(...) // calls server.Logger.Log(...) // the field name of the embedded type is its type name (in this case Logger) var logger *log.Logger = server.Logger ``` ## Errors There is no exception handling. Functions that might produce an error just declare an additional return value of type `Error`. This is the `Error` interface: ```go type error interface { Error() string } ``` A function that might return an error: ```go func doStuff() (int, error) { } func main() { result, error := doStuff() if (error != nil) { // handle error } else { // all is good, use result } } ``` # Concurrency ## Goroutines Goroutines are lightweight threads (managed by Go, not OS threads). `go f(a, b)` starts a new goroutine which runs `f` (given `f` is a function). ```go // just a function (which can be later started as a goroutine) func doStuff(s string) { } func main() { // using a named function in a goroutine go doStuff("foobar") // using an anonymous inner function in a goroutine go func (x int) { // function body goes here }(42) } ``` ## Channels ```go ch := make(chan int) // create a channel of type int ch <- 42 // Send a value to the channel ch. v := <-ch // Receive a value from ch // Non-buffered channels block. Read blocks when no value is available, write blocks if a value already has been written but not read. // Create a buffered channel. Writing to a buffered channels does not block if less than <buffer size> unread values have been written. ch := make(chan int, 100) close(c) // closes the channel (only sender should close) // read from channel and test if it has been closed v, ok := <-ch // if ok is false, channel has been closed // Read from channel until it is closed for i := range ch { fmt.Println(i) } // select blocks on multiple channel operations, if one unblocks, the corresponding case is executed func doStuff(channelOut, channelIn chan int) { select { case channelOut <- 42: fmt.Println("We could write to channelOut!") case x := <- channelIn: fmt.Println("We could read from channelIn") case <-time.After(time.Second * 1): fmt.Println("timeout") } } ``` ### Channel Axioms - A send to a nil channel blocks forever ```go var c chan string c <- "Hello, World!" // fatal error: all goroutines are asleep - deadlock! ``` - A receive from a nil channel blocks forever ```go var c chan string fmt.Println(<-c) // fatal error: all goroutines are asleep - deadlock! ``` - A send to a closed channel panics ```go var c = make(chan string, 1) c <- "Hello, World!" close(c) c <- "Hello, Panic!" // panic: send on closed channel ``` - A receive from a closed channel returns the zero value immediately ```go var c = make(chan int, 2) c <- 1 c <- 2 close(c) for i := 0; i < 3; i++ { fmt.Printf("%d ", <-c) } // 1 2 0 ``` # Snippets ## HTTP Server ```go package main import ( "fmt" "net/http" ) // define a type for the response type Hello struct{} // let that type implement the ServeHTTP method (defined in interface http.Handler) func (h Hello) ServeHTTP(w http.ResponseWriter, r *http.Request) { fmt.Fprint(w, "Hello!") } func main() { var h Hello http.ListenAndServe("localhost:4000", h) } // Here's the method signature of http.ServeHTTP: // type Handler interface { // ServeHTTP(w http.ResponseWriter, r *http.Request) // } ``` 
 Brent Salisbury
              created
            
            this gist
            
              Brent Salisbury
              created
            
            this gist