Created
July 1, 2020 10:32
-
-
Save nonlinearjunkie/cfa574e6e66d2de475c147324f88db0a to your computer and use it in GitHub Desktop.
Revisions
-
nonlinearjunkie created this gist
Jul 1, 2020 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,44 @@ base_model = tf.keras.applications.MobileNetV2(input_shape=(224,224,3), alpha=1.0, include_top=False, weights="imagenet") for layer in base_model.layers: layer.trainable = False model_transfered_1=Sequential() model_transfered_1.add(base_model) # Flattening model_transfered_1.add(Flatten()) # Fully connected layer 1st layer model_transfered_1.add(Dense(32)) model_transfered_1.add(BatchNormalization()) model_transfered_1.add(Activation('relu')) model_transfered_1.add(Dropout(0.4)) # Fully connected layer 2nd layer model_transfered_1.add(Dense(32)) model_transfered_1.add(BatchNormalization()) model_transfered_1.add(Activation('relu')) model_transfered_1.add(Dropout(0.4)) model_transfered_1.add(Dense(7, activation='softmax')) model_transfered_1.compile(optimizer=Adam(lr=0.0005), loss='categorical_crossentropy', metrics=['categorical_accuracy']) epochs = 10 steps_per_epoch = train_generator.n//train_generator.batch_size validation_steps = validation_generator.n//validation_generator.batch_size callbacks = [PlotLossesKerasTF(), checkpoint, reduce_lr] history = model_transfered_1.fit( x=train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data = validation_generator, validation_steps = validation_steps, shuffle=True )