Skip to content

Instantly share code, notes, and snippets.

@omz
Created July 8, 2018 10:36
Show Gist options
  • Select an option

  • Save omz/a7c5f310e1c8b829a5a613cd556863d4 to your computer and use it in GitHub Desktop.

Select an option

Save omz/a7c5f310e1c8b829a5a613cd556863d4 to your computer and use it in GitHub Desktop.

Revisions

  1. omz created this gist Jul 8, 2018.
    108 changes: 108 additions & 0 deletions CoreML Image Recognition.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,108 @@
    #!python3
    '''
    This is a demo of how you can use the CoreML framework (via objc_util) to classify images in Pythonista. It downloads the trained 'MobileNet' CoreML model from the Internet, and uses it to classify images that are either taken with the camera, or picked from the photo library.
    '''

    import requests
    import os
    import io
    import photos
    import dialogs
    from PIL import Image
    from objc_util import ObjCClass, nsurl, ns

    # Configuration (change URL and filename if you want to use a different model):
    MODEL_URL = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel'
    MODEL_FILENAME = 'mobilenet.mlmodel'

    # Use a local path for caching the model file (no need to sync this with iCloud):
    MODEL_PATH = os.path.join(os.path.expanduser('~/Documents'), MODEL_FILENAME)

    # Declare/import ObjC classes:
    MLModel = ObjCClass('MLModel')
    VNCoreMLModel = ObjCClass('VNCoreMLModel')
    VNCoreMLRequest = ObjCClass('VNCoreMLRequest')
    VNImageRequestHandler = ObjCClass('VNImageRequestHandler')

    def load_model():
    '''Helper method for downloading/caching the mlmodel file'''
    if not os.path.exists(MODEL_PATH):
    print(f'Downloading model: {MODEL_FILENAME}...')
    r = requests.get(MODEL_URL, stream=True)
    file_size = int(r.headers['content-length'])
    with open(MODEL_PATH, 'wb') as f:
    bytes_written = 0
    for chunk in r.iter_content(1024*100):
    f.write(chunk)
    print(f'{bytes_written/file_size*100:.2f}% downloaded')
    bytes_written += len(chunk)
    print('Download finished')
    ml_model_url = nsurl(MODEL_PATH)
    # Compile the model:
    c_model_url = MLModel.compileModelAtURL_error_(ml_model_url, None)
    # Load model from the compiled model file:
    ml_model = MLModel.modelWithContentsOfURL_error_(c_model_url, None)
    # Create a VNCoreMLModel from the MLModel for use with the Vision framework:
    vn_model = VNCoreMLModel.modelForMLModel_error_(ml_model, None)
    return vn_model


    def _classify_img_data(img_data):
    '''The main image classification method, used by `classify_image` (for camera images) and `classify_asset` (for photo library assets).'''
    vn_model = load_model()
    # Create and perform the recognition request:
    req = VNCoreMLRequest.alloc().initWithModel_(vn_model).autorelease()
    handler = VNImageRequestHandler.alloc().initWithData_options_(img_data, None).autorelease()
    success = handler.performRequests_error_([req], None)
    if success:
    best_result = req.results()[0]
    label = str(best_result.identifier())
    confidence = best_result.confidence()
    return {'label': label, 'confidence': confidence}
    else:
    return None


    def classify_image(img):
    buffer = io.BytesIO()
    img.save(buffer, 'JPEG')
    img_data = ns(buffer.getvalue())
    return _classify_img_data(img_data)


    def classify_asset(asset):
    img_data = ns(asset.get_image_data().getvalue())
    return _classify_img_data(img_data)


    def scale_image(img, max_dim):
    '''Helper function to downscale an image for showing in the console'''
    scale = max_dim / max(img.size)
    w = int(img.size[0] * scale)
    h = int(img.size[1] * scale)
    return img.resize((w, h), Image.ANTIALIAS)


    def main():
    r = dialogs.alert('Classify Image', '', 'Camera', 'Photo Library')
    if r == 1:
    img = photos.capture_image()
    if img is None:
    return
    scale_image(img, 224).show()
    result = classify_image(img)
    else:
    asset = photos.pick_asset()
    if asset is None:
    return
    result = classify_asset(asset)
    asset.get_ui_image((255, 255)).show()
    if result:
    print(result)
    else:
    print('Image classification failed')


    if __name__ == '__main__':
    main()