Created
          June 18, 2010 05:04 
        
      - 
      
- 
        Save pims/443265 to your computer and use it in GitHub Desktop. 
Revisions
- 
        pims revised this gist Jun 18, 2010 . 1 changed file with 1 addition and 1 deletion.There are no files selected for viewingThis file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -28,7 +28,7 @@ def __online_variance(self,x,y): self.variance_y = self.m2_y/(self.n - 1) def __online_covariance(self,x,y): self.cov = self.cov + ((y - self.old_mean_y) * (x - self.old_mean_x)) * (self.n - 1.0) / self.n def push(self,x,y): self.n = self.n + 1 
- 
        pims created this gist Jun 18, 2010 .There are no files selected for viewingThis file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,66 @@ #/usr/bin/env python import math class RunningCorrelation: def __init__(self): self.n = 0.0 self.mean_x = 0.0 self.mean_y = 0.0 self.m2_x = 0.0 self.m2_y = 0.0 self.cov = 0.0 self.variance_x = 0.0 self.variance_y = 0.0 self.old_mean_x = 0.0 self.old_mean_y = 0.0 def __online_variance(self,x,y): delta_x = x - self.mean_x delta_y = y - self.mean_y self.mean_x = self.mean_x + delta_x / self.n self.mean_y = self.mean_y + delta_y / self.n self.m2_x = self.m2_x + delta_x * (x - self.mean_x) # This expression uses the new value of mean self.m2_y = self.m2_y + delta_y * (y - self.mean_y) # This expression uses the new value of mean self.variance_x = self.m2_x/(self.n - 1) self.variance_y = self.m2_y/(self.n - 1) def __online_covariance(self,x,y): self.cov = self.cov + ((y - self.old_mean_y) * (x - self.old_mean_x)) * (self.n - 1) / self.n def push(self,x,y): self.n = self.n + 1 if self.n == 1: self.mean_x = x self.mean_y = y else: self.old_mean_x = self.mean_x self.old_mean_y = self.mean_y self.__online_variance(x,y) self.__online_covariance(x,y) @property def r(self): if self.cov > 0: return self.cov / (math.sqrt(self.variance_x) * math.sqrt(self.variance_y)) return 0 @property def variance(self): return (self.variance_x,self.variance_y) def main(): rc = RunningCorrelation() v1 = [2.5,3.5,3.0,3.5,2.5,3.0] v2 = [3.0,3.5,1.5,5.0,3.5,3.0] for x,y in zip(v1,v2): rc.push(x,y) print rc.r #value of r is wrong, and is twice the correct value on the first pass > 1 if __name__ == '__main__': main()