Created
September 10, 2020 11:47
-
-
Save priteshgohil/ea3fd8fc89f0112d09fe8cd77de79067 to your computer and use it in GitHub Desktop.
Revisions
-
priteshgohil created this gist
Sep 10, 2020 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,67 @@ import time import statistics import numpy as np def mean_normal(list_data): """ Calculate mean of python list normaly input: list of int or float output: mean value """ start = time.time() avg = sum(list_data)/len(list_data) end = time.time() print("avg: {} & Time taken by mean_normal: {:.5f} sec".format(avg, end-start)) return avg def mean_statistics(list_data): """ Calculate mean of python list using statistics lib input: list of int or float output: mean value """ start = time.time() avg = statistics.mean(list_data) end = time.time() print("avg: {} & Time taken by mean_statistics: {:.5f} sec".format(avg, end-start)) return avg def mean_numpy_with_list(list_data): """ Calculate mean of python list using numpy lib input: list of int or float output: mean value """ start = time.time() avg = np.mean(list_data) end = time.time() print("avg: {} & Time taken by mean_numpy_with_list: {:.5f} sec".format(avg, end-start)) return avg def mean_numpy_with_array(array_data): """ Calculate mean of numpy array using numpy lib input: 1-d numpy array output: mean value """ start = time.time() avg = np.mean(array_data) end = time.time() print("avg: {} & Time taken by mean_numpy_with_array: {:.5f} sec".format(avg, end-start)) return avg if __name__ == '__main__': # Test with int range data = list(range(3000000)) mean_normal(data) mean_statistics(data) mean_numpy_with_list(data) mean_numpy_with_array(np.array(data)) # Test with float range data = list(np.linspace(500,1000,3000000)) mean_normal(data) mean_statistics(data) mean_numpy_with_list(data) mean_numpy_with_array(np.array(data))