Created
November 3, 2019 17:42
-
-
Save pvva/331444eaded2b939ce4f44ae8e4780b2 to your computer and use it in GitHub Desktop.
rnn2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class CharRnn(nn.Module): | |
| def __init__(self, vocab_size, n_fac, n_hidden, batch_size, layers=2): | |
| super().__init__() | |
| self.e = nn.Embedding(vocab_size, n_fac) | |
| self.rnn = nn.LSTM(n_fac, n_hidden, layers, dropout=0.1) | |
| self.l_out = nn.Linear(n_hidden, vocab_size) | |
| self.n_hidden = n_hidden | |
| self.layers = layers | |
| self.init_hidden_state(batch_size) | |
| def init_hidden_state(self, batch_size): | |
| self.h = ( | |
| torch.zeros(self.layers, batch_size, self.n_hidden).cuda(), | |
| torch.zeros(self.layers, batch_size, self.n_hidden).cuda(), | |
| ) | |
| def forward(self, inp): | |
| inp = self.e(inp) | |
| b_size = inp[0].size(0) | |
| if self.h[0].size(1) != b_size: | |
| self.init_hidden_state(b_size) | |
| outp, h = self.rnn(inp, self.h) | |
| self.h = detach_from_history(h) | |
| return F.log_softmax(self.l_out(outp), dim=-1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment