- 
      
 - 
        
Save qiqipipioioi/3ef5dbbe6c33858c24ad75f7aca2034a to your computer and use it in GitHub Desktop.  
    Negative binomial loss function
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import tensorflow as tf | |
| def negative_binomial_loss(y_true, y_pred): | |
| """ | |
| Negative binomial loss function. | |
| Assumes tensorflow backend. | |
| Parameters | |
| ---------- | |
| y_true : tf.Tensor | |
| Ground truth values of predicted variable. | |
| y_pred : tf.Tensor | |
| n and p values of predicted distribution. | |
| Returns | |
| ------- | |
| nll : tf.Tensor | |
| Negative log likelihood. | |
| """ | |
| # Separate the parameters | |
| n, p = tf.unstack(y_pred, num=2, axis=-1) | |
| # Add one dimension to make the right shape | |
| n = tf.expand_dims(n, -1) | |
| p = tf.expand_dims(p, -1) | |
| # Calculate the negative log likelihood | |
| nll = ( | |
| tf.math.lgamma(n) | |
| + tf.math.lgamma(y_true + 1) | |
| - tf.math.lgamma(n + y_true) | |
| - n * tf.math.log(p) | |
| - y_true * tf.math.log(1 - p) | |
| ) | |
| return nll | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment